Left global dimensions and inverse polynomial modules
We prove the fact l.gl.dimR[x]=(l.gl.dimR)+1, where l.gl.dim means the left global dimension by using inverse polynomial modules and injective dimensions. The classical way to prove the fact l.gl.dimR[x]=(l.gl.dimR)+1 is using polynomial modules and projective dimensions.
Saved in:
Main Author: | Sangwon Park |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2000-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171200004129 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Some properties of intuitionistic fuzzy modules
by: Behnam Talaee, et al.
Published: (2024-06-01) -
PSO-Aided Inverse Design of Silicon Modulator
by: Zijian Zhu, et al.
Published: (2024-01-01) -
When are the classes of Gorenstein modules (co)tilting?
by: Wang, Junpeng, et al.
Published: (2024-11-01) -
Neutrosophic modules over modules
by: Ali Yahya Hummdi, et al.
Published: (2024-12-01) -
$C$-$fp_{n}$-injective and $C$-$fp_{n}$-flat modules
by: Mostafa Amini, et al.
Published: (2025-01-01)