Left global dimensions and inverse polynomial modules
We prove the fact l.gl.dimR[x]=(l.gl.dimR)+1, where l.gl.dim means the left global dimension by using inverse polynomial modules and injective dimensions. The classical way to prove the fact l.gl.dimR[x]=(l.gl.dimR)+1 is using polynomial modules and projective dimensions.
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2000-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171200004129 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841524782149926912 |
---|---|
author | Sangwon Park |
author_facet | Sangwon Park |
author_sort | Sangwon Park |
collection | DOAJ |
description | We prove the fact l.gl.dimR[x]=(l.gl.dimR)+1, where l.gl.dim means the left global dimension by using inverse polynomial modules
and injective dimensions. The classical way to prove the fact
l.gl.dimR[x]=(l.gl.dimR)+1 is using polynomial modules and
projective dimensions. |
format | Article |
id | doaj-art-6234447be8f9418894c761fcb5066b33 |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 2000-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-6234447be8f9418894c761fcb5066b332025-02-03T05:47:21ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252000-01-0124743744010.1155/S0161171200004129Left global dimensions and inverse polynomial modulesSangwon Park0Department of Mathematics, Dong-A University, Pusan 604-714, KoreaWe prove the fact l.gl.dimR[x]=(l.gl.dimR)+1, where l.gl.dim means the left global dimension by using inverse polynomial modules and injective dimensions. The classical way to prove the fact l.gl.dimR[x]=(l.gl.dimR)+1 is using polynomial modules and projective dimensions.http://dx.doi.org/10.1155/S0161171200004129Inverse polynomial moduleinjective moduleshort exact sequenceleft global dimension. |
spellingShingle | Sangwon Park Left global dimensions and inverse polynomial modules International Journal of Mathematics and Mathematical Sciences Inverse polynomial module injective module short exact sequence left global dimension. |
title | Left global dimensions and inverse polynomial modules |
title_full | Left global dimensions and inverse polynomial modules |
title_fullStr | Left global dimensions and inverse polynomial modules |
title_full_unstemmed | Left global dimensions and inverse polynomial modules |
title_short | Left global dimensions and inverse polynomial modules |
title_sort | left global dimensions and inverse polynomial modules |
topic | Inverse polynomial module injective module short exact sequence left global dimension. |
url | http://dx.doi.org/10.1155/S0161171200004129 |
work_keys_str_mv | AT sangwonpark leftglobaldimensionsandinversepolynomialmodules |