Left global dimensions and inverse polynomial modules

We prove the fact l.gl.dimR[x]=(l.gl.dimR)+1, where l.gl.dim means the left global dimension by using inverse polynomial modules and injective dimensions. The classical way to prove the fact l.gl.dimR[x]=(l.gl.dimR)+1 is using polynomial modules and projective dimensions.

Saved in:
Bibliographic Details
Main Author: Sangwon Park
Format: Article
Language:English
Published: Wiley 2000-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171200004129
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841524782149926912
author Sangwon Park
author_facet Sangwon Park
author_sort Sangwon Park
collection DOAJ
description We prove the fact l.gl.dimR[x]=(l.gl.dimR)+1, where l.gl.dim means the left global dimension by using inverse polynomial modules and injective dimensions. The classical way to prove the fact l.gl.dimR[x]=(l.gl.dimR)+1 is using polynomial modules and projective dimensions.
format Article
id doaj-art-6234447be8f9418894c761fcb5066b33
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2000-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-6234447be8f9418894c761fcb5066b332025-02-03T05:47:21ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252000-01-0124743744010.1155/S0161171200004129Left global dimensions and inverse polynomial modulesSangwon Park0Department of Mathematics, Dong-A University, Pusan 604-714, KoreaWe prove the fact l.gl.dimR[x]=(l.gl.dimR)+1, where l.gl.dim means the left global dimension by using inverse polynomial modules and injective dimensions. The classical way to prove the fact l.gl.dimR[x]=(l.gl.dimR)+1 is using polynomial modules and projective dimensions.http://dx.doi.org/10.1155/S0161171200004129Inverse polynomial moduleinjective moduleshort exact sequenceleft global dimension.
spellingShingle Sangwon Park
Left global dimensions and inverse polynomial modules
International Journal of Mathematics and Mathematical Sciences
Inverse polynomial module
injective module
short exact sequence
left global dimension.
title Left global dimensions and inverse polynomial modules
title_full Left global dimensions and inverse polynomial modules
title_fullStr Left global dimensions and inverse polynomial modules
title_full_unstemmed Left global dimensions and inverse polynomial modules
title_short Left global dimensions and inverse polynomial modules
title_sort left global dimensions and inverse polynomial modules
topic Inverse polynomial module
injective module
short exact sequence
left global dimension.
url http://dx.doi.org/10.1155/S0161171200004129
work_keys_str_mv AT sangwonpark leftglobaldimensionsandinversepolynomialmodules