Comparing different definitions of prediabetes with subsequent risk of diabetes: an individual participant data meta-analysis involving 76 513 individuals and 8208 cases of incident diabetes

Objective There are currently five widely used definition of prediabetes. We compared the ability of these to predict 5-year conversion to diabetes and investigated whether there were other cut-points identifying risk of progression to diabetes that may be more useful.Research design and methods We...

Full description

Saved in:
Bibliographic Details
Main Authors: Fereidoun Azizi, Edward W Gregg, Pamela J Schreiner, Julie A Pasco, David R Jacobs Jr, Mark Woodward, Gary Wittert, Hiroshi Yatsuya, Davood Khalili, Gita Mishra, Rachel R Huxley, Crystal Man Ying Lee, Elizabeth Selvin, Tiffany K Gill, Dianna J Magliano, Jonathan E Shaw, Stephen Colagiuri, Robert Adams, Rafael Gabriel, Clicerio Gonzalez, Allison Hodge, Joshua J Joseph, Kirsten Mehlig, Roger Milne, Morgana Mongraw-Chaffin, Masaru Sakurai
Format: Article
Language:English
Published: BMJ Publishing Group 2019-05-01
Series:BMJ Open Diabetes Research & Care
Online Access:https://drc.bmj.com/content/7/1/e000794.full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846121647958917120
author Fereidoun Azizi
Edward W Gregg
Pamela J Schreiner
Julie A Pasco
David R Jacobs Jr
Mark Woodward
Gary Wittert
Hiroshi Yatsuya
Davood Khalili
Gita Mishra
Rachel R Huxley
Crystal Man Ying Lee
Elizabeth Selvin
Tiffany K Gill
Dianna J Magliano
Jonathan E Shaw
Stephen Colagiuri
Robert Adams
Rafael Gabriel
Clicerio Gonzalez
Allison Hodge
Joshua J Joseph
Kirsten Mehlig
Roger Milne
Morgana Mongraw-Chaffin
Masaru Sakurai
author_facet Fereidoun Azizi
Edward W Gregg
Pamela J Schreiner
Julie A Pasco
David R Jacobs Jr
Mark Woodward
Gary Wittert
Hiroshi Yatsuya
Davood Khalili
Gita Mishra
Rachel R Huxley
Crystal Man Ying Lee
Elizabeth Selvin
Tiffany K Gill
Dianna J Magliano
Jonathan E Shaw
Stephen Colagiuri
Robert Adams
Rafael Gabriel
Clicerio Gonzalez
Allison Hodge
Joshua J Joseph
Kirsten Mehlig
Roger Milne
Morgana Mongraw-Chaffin
Masaru Sakurai
author_sort Fereidoun Azizi
collection DOAJ
description Objective There are currently five widely used definition of prediabetes. We compared the ability of these to predict 5-year conversion to diabetes and investigated whether there were other cut-points identifying risk of progression to diabetes that may be more useful.Research design and methods We conducted an individual participant meta-analysis using longitudinal data included in the Obesity, Diabetes and Cardiovascular Disease Collaboration. Cox regression models were used to obtain study-specific HRs for incident diabetes associated with each prediabetes definition. Harrell’s C-statistics were used to estimate how well each prediabetes definition discriminated 5-year risk of diabetes. Spline and receiver operating characteristic curve (ROC) analyses were used to identify alternative cut-points.Results Sixteen studies, with 76 513 participants and 8208 incident diabetes cases, were available. Compared with normoglycemia, current prediabetes definitions were associated with four to eight times higher diabetes risk (HRs (95% CIs): 3.78 (3.11 to 4.60) to 8.36 (4.88 to 14.33)) and all definitions discriminated 5-year diabetes risk with good accuracy (C-statistics 0.79–0.81). Cut-points identified through spline analysis were fasting plasma glucose (FPG) 5.1 mmol/L and glycated hemoglobin (HbA1c) 5.0% (31 mmol/mol) and cut-points identified through ROC analysis were FPG 5.6 mmol/L, 2-hour postload glucose 7.0 mmol/L and HbA1c 5.6% (38 mmol/mol).Conclusions In terms of identifying individuals at greatest risk of developing diabetes within 5 years, using prediabetes definitions that have lower values produced non-significant gain. Therefore, deciding which definition to use will ultimately depend on the goal for identifying individuals at risk of diabetes.
format Article
id doaj-art-61ef9a99e27b49db8b9dd98d50c3cfd5
institution Kabale University
issn 2052-4897
language English
publishDate 2019-05-01
publisher BMJ Publishing Group
record_format Article
series BMJ Open Diabetes Research & Care
spelling doaj-art-61ef9a99e27b49db8b9dd98d50c3cfd52024-12-15T16:35:08ZengBMJ Publishing GroupBMJ Open Diabetes Research & Care2052-48972019-05-017110.1136/bmjdrc-2019-000794Comparing different definitions of prediabetes with subsequent risk of diabetes: an individual participant data meta-analysis involving 76 513 individuals and 8208 cases of incident diabetesFereidoun Azizi0Edward W Gregg1Pamela J Schreiner2Julie A Pasco3David R Jacobs Jr4Mark Woodward5Gary Wittert6Hiroshi Yatsuya7Davood Khalili8Gita Mishra9Rachel R Huxley10Crystal Man Ying Lee11Elizabeth Selvin12Tiffany K Gill13Dianna J Magliano14Jonathan E Shaw15Stephen Colagiuri16Robert Adams17Rafael Gabriel18Clicerio Gonzalez19Allison Hodge20Joshua J Joseph21Kirsten Mehlig22Roger Milne23Morgana Mongraw-Chaffin24Masaru Sakurai25Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran , IranSchool of Population Health, RCSI University of Medicine and Health Sciences, Dublin, IrelandDivision of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USAIMPACT – Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, AustraliaDivision of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USAThe George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, AustraliaDiscipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, AustraliaPublic Health and Health Systems, Nagoya University Graduate School of Medicine Faculty of Medicine, Nagoya, Aichi, JapanPrevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IranSchool of Public Health, The University of Queensland, Saint Lucia, Queensland, AustraliaFaculty of Health, Deakin University, Burwood, Victoria, AustraliaSchool of Population Health, Curtin University, Perth, Western Australia, Australia10 Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USAThe University of Adelaide Faculty of Health and Medical Sciences, Adelaide, South Australia, AustraliaDiabetes and Population Health, Baker Heart and Diabetes Institute, Melbourne, Victoria, AustraliaBaker Heart and Diabetes Institute, Melbourne, Victoria, Australia2 Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, AustraliaAdelaide Institute for Sleep Health (AISH), Flinders University, Adelaide, SA, AustraliaNational School of Public Health, National Institute of Health Carlos III, Madrid, SpainUnidad de Investigación en Diabetes y Riesgo Cardiovascular, Instituto Nacional de Salud Publica, Cuernavaca, Morelos, MexicoCancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, AustraliaDeparment of Medicine, Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University, Columbus, Ohio, USA1 School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, SwedenCancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, AustraliaDepartment of Epidemiology & Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USADepartment of Social and Environmental Medicine, Kanazawa Medical University, Uchinada, JapanObjective There are currently five widely used definition of prediabetes. We compared the ability of these to predict 5-year conversion to diabetes and investigated whether there were other cut-points identifying risk of progression to diabetes that may be more useful.Research design and methods We conducted an individual participant meta-analysis using longitudinal data included in the Obesity, Diabetes and Cardiovascular Disease Collaboration. Cox regression models were used to obtain study-specific HRs for incident diabetes associated with each prediabetes definition. Harrell’s C-statistics were used to estimate how well each prediabetes definition discriminated 5-year risk of diabetes. Spline and receiver operating characteristic curve (ROC) analyses were used to identify alternative cut-points.Results Sixteen studies, with 76 513 participants and 8208 incident diabetes cases, were available. Compared with normoglycemia, current prediabetes definitions were associated with four to eight times higher diabetes risk (HRs (95% CIs): 3.78 (3.11 to 4.60) to 8.36 (4.88 to 14.33)) and all definitions discriminated 5-year diabetes risk with good accuracy (C-statistics 0.79–0.81). Cut-points identified through spline analysis were fasting plasma glucose (FPG) 5.1 mmol/L and glycated hemoglobin (HbA1c) 5.0% (31 mmol/mol) and cut-points identified through ROC analysis were FPG 5.6 mmol/L, 2-hour postload glucose 7.0 mmol/L and HbA1c 5.6% (38 mmol/mol).Conclusions In terms of identifying individuals at greatest risk of developing diabetes within 5 years, using prediabetes definitions that have lower values produced non-significant gain. Therefore, deciding which definition to use will ultimately depend on the goal for identifying individuals at risk of diabetes.https://drc.bmj.com/content/7/1/e000794.full
spellingShingle Fereidoun Azizi
Edward W Gregg
Pamela J Schreiner
Julie A Pasco
David R Jacobs Jr
Mark Woodward
Gary Wittert
Hiroshi Yatsuya
Davood Khalili
Gita Mishra
Rachel R Huxley
Crystal Man Ying Lee
Elizabeth Selvin
Tiffany K Gill
Dianna J Magliano
Jonathan E Shaw
Stephen Colagiuri
Robert Adams
Rafael Gabriel
Clicerio Gonzalez
Allison Hodge
Joshua J Joseph
Kirsten Mehlig
Roger Milne
Morgana Mongraw-Chaffin
Masaru Sakurai
Comparing different definitions of prediabetes with subsequent risk of diabetes: an individual participant data meta-analysis involving 76 513 individuals and 8208 cases of incident diabetes
BMJ Open Diabetes Research & Care
title Comparing different definitions of prediabetes with subsequent risk of diabetes: an individual participant data meta-analysis involving 76 513 individuals and 8208 cases of incident diabetes
title_full Comparing different definitions of prediabetes with subsequent risk of diabetes: an individual participant data meta-analysis involving 76 513 individuals and 8208 cases of incident diabetes
title_fullStr Comparing different definitions of prediabetes with subsequent risk of diabetes: an individual participant data meta-analysis involving 76 513 individuals and 8208 cases of incident diabetes
title_full_unstemmed Comparing different definitions of prediabetes with subsequent risk of diabetes: an individual participant data meta-analysis involving 76 513 individuals and 8208 cases of incident diabetes
title_short Comparing different definitions of prediabetes with subsequent risk of diabetes: an individual participant data meta-analysis involving 76 513 individuals and 8208 cases of incident diabetes
title_sort comparing different definitions of prediabetes with subsequent risk of diabetes an individual participant data meta analysis involving 76 513 individuals and 8208 cases of incident diabetes
url https://drc.bmj.com/content/7/1/e000794.full
work_keys_str_mv AT fereidounazizi comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT edwardwgregg comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT pamelajschreiner comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT julieapasco comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT davidrjacobsjr comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT markwoodward comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT garywittert comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT hiroshiyatsuya comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT davoodkhalili comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT gitamishra comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT rachelrhuxley comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT crystalmanyinglee comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT elizabethselvin comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT tiffanykgill comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT diannajmagliano comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT jonathaneshaw comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT stephencolagiuri comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT robertadams comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT rafaelgabriel comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT cliceriogonzalez comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT allisonhodge comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT joshuajjoseph comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT kirstenmehlig comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT rogermilne comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT morganamongrawchaffin comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes
AT masarusakurai comparingdifferentdefinitionsofprediabeteswithsubsequentriskofdiabetesanindividualparticipantdatametaanalysisinvolving76513individualsand8208casesofincidentdiabetes