Quantizing Carrollian field theories
Abstract Carrollian field theories have recently emerged as a candidate dual to flat space quantum gravity. We carefully quantize simple two-derivative Carrollian theories, revealing a strong sensitivity to the ultraviolet. They can be regulated upon being placed on a spatial lattice and working at...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
SpringerOpen
2024-10-01
|
| Series: | Journal of High Energy Physics |
| Subjects: | |
| Online Access: | https://doi.org/10.1007/JHEP10(2024)049 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Carrollian field theories have recently emerged as a candidate dual to flat space quantum gravity. We carefully quantize simple two-derivative Carrollian theories, revealing a strong sensitivity to the ultraviolet. They can be regulated upon being placed on a spatial lattice and working at finite inverse temperature. Unlike in conventional field theories, the details of the lattice-regulated Carrollian theories remain important at long distances even in the limit that the lattice spacing is sent to zero. We use that limit to define interacting continuum models with a tractable perturbative expansion. The ensuing theories are those of generalized free fields, with non-Gaussian correlations suppressed by positive powers of the lattice spacing, and an unbroken supertranslation symmetry. |
|---|---|
| ISSN: | 1029-8479 |