A Kalman Filter Approach for Estimating Daily Discharge Using Space‐Based Discharge Estimates
Abstract The SWOT satellite mission is the first to conduct a global survey of the Earth's surface waters, measuring water surface height, river width, and water surface slope, based on which river discharge is estimated. At mid‐latitudes, the repeat orbit design of SWOT only allows a sampling...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2025-08-01
|
| Series: | Water Resources Research |
| Subjects: | |
| Online Access: | https://doi.org/10.1029/2024WR037667 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract The SWOT satellite mission is the first to conduct a global survey of the Earth's surface waters, measuring water surface height, river width, and water surface slope, based on which river discharge is estimated. At mid‐latitudes, the repeat orbit design of SWOT only allows a sampling of twice per repeat cycle, which is considered too low for most hydrological applications. To address the spatiotemporal limitations of SWOT, we develop a method that assimilates SWOT observations across continuous reaches within a single‐branch river network to obtain daily discharge estimates. Our model‐free assimilation method provides a linear dynamic system that includes a process model based on a physically based spatiotemporal discharge correlation model and observation equations utilizing SWOT products. We solve this dynamic system using a simple Kalman filter in the time domain, assimilating SWOT observations and incorporating the physically based prior to estimate daily discharge. Since SWOT discharge products were not yet available during the period of this research, we used synthetic SWOT data sets, introducing random and systematic errors through Monte Carlo simulation. The validation of the estimated discharge against true discharge over all test cases leads to a median correlation as high as 0.95, a median NSE for residuals (mean‐removed discharge) as high as 0.81, and a median relative bias as low as 5%, respectively. These promising results suggest that daily discharge for continuous reaches in a river network can be obtained through our data assimilation framework. |
|---|---|
| ISSN: | 0043-1397 1944-7973 |