Tightly Coupled LIDAR/IMU/UWB Fusion via Resilient Factor Graph for Quadruped Robot Positioning

Continuous accurate positioning in global navigation satellite system (GNSS)-denied environments is essential for robot navigation. Significant advances have been made with light detection and ranging (LiDAR)-inertial measurement unit (IMU) techniques, especially in challenging environments with var...

Full description

Saved in:
Bibliographic Details
Main Authors: Yujin Kuang, Tongfei Hu, Mujiao Ouyang, Yuan Yang, Xiaoguo Zhang
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/16/22/4171
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Continuous accurate positioning in global navigation satellite system (GNSS)-denied environments is essential for robot navigation. Significant advances have been made with light detection and ranging (LiDAR)-inertial measurement unit (IMU) techniques, especially in challenging environments with varying lighting and other complexities. However, the LiDAR/IMU method relies on a recursive positioning principle, resulting in the gradual accumulation and dispersion of errors over time. To address these challenges, this study proposes a tightly coupled LiDAR/IMU/UWB fusion approach that integrates an ultra-wideband (UWB) positioning technique. First, a lightweight point cloud segmentation and constraint algorithm is designed to minimize elevation errors and reduce computational demands. Second, a multi-decision non-line-of-sight (NLOS) recognition module using information entropy is employed to mitigate NLOS errors. Finally, a tightly coupled framework via a resilient mechanism is proposed to achieve reliable position estimation for quadruped robots. Experimental results demonstrate that our system provides robust positioning results even in LiDAR-limited and NLOS conditions, maintaining low time costs.
ISSN:2072-4292