Epigenetic Alterations in Ovarian Function and Their Impact on Assisted Reproductive Technologies: A Systematic Review
<b>Background</b>: Epigenetic modifications have an important role in controlling ovarian function, modulating ovarian response and implantation success in Assisted Reproductive Technologies (ART). The alterations, such as DNA methylation and non-coding RNA control, have been identified...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Biomedicines |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-9059/13/3/730 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | <b>Background</b>: Epigenetic modifications have an important role in controlling ovarian function, modulating ovarian response and implantation success in Assisted Reproductive Technologies (ART). The alterations, such as DNA methylation and non-coding RNA control, have been identified as key variables regulating ovarian physiology and reproductive outcomes. This systematic review investigates the significance of epigenetic pathways in ovarian function, with an emphasis on their effect on ART success rates. <b>Methods</b>: A thorough search of the PubMed, Scopus, and EMBASE databases was performed to find articles published between 2015 and 2024 that investigated the connection between epigenetic changes and ovarian function in ART patients. Studies that examined miRNA expression, DNA methylation, and histone changes in follicular fluid, granulosa cells, and embryos were included. The study followed the PRISMA recommendations to guarantee scientific rigor and repeatability. The data were combined into a thorough study of epigenetic markers linked to ovarian aging, ovarian reserve, and implantation success. <b>Results</b>: A total of 15 studies satisfied the inclusion criteria, with substantial relationships found between distinct epigenetic markers and ovarian function. Changes in miRNA expression patterns in follicular fluid and granulosa cells were associated with oocyte maturation, ovarian reserve, and implantation potential. Women with low ovarian reserve and polycystic ovary syndrome (PCOS) have different DNA methylation patterns. MiR-27a-3p and miR-15a-5p were shown to be involved with granulosa cell malfunction and poor ovarian response, whereas global DNA hypomethylation was linked to ovarian aging and ART results. <b>Conclusions</b>: Epigenetic alterations affect ovarian function via pathways that control hormone signaling, follicular development, and implantation success. Further study is needed to determine the practical applicability of epigenetic biomarkers in predicting ART effectiveness and enhancing patient treatment procedures. |
|---|---|
| ISSN: | 2227-9059 |