A New Local Optimal Spline Wavelet for Image Edge Detection
Wavelet-based edge detection methods have evolved significantly over the years, contributing to advances in image processing, computer vision, and pattern recognition. This paper proposes a new local optimal spline wavelet (LOSW) and the dual wavelet of the LOSW. Then, a pair of dual filters can be...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-12-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/13/1/42 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wavelet-based edge detection methods have evolved significantly over the years, contributing to advances in image processing, computer vision, and pattern recognition. This paper proposes a new local optimal spline wavelet (LOSW) and the dual wavelet of the LOSW. Then, a pair of dual filters can be obtained, which can provide distortion-free signal decomposition and reconstruction, while having stronger denoising and feature capture capabilities. The coefficients of the pair of dual filters are calculated for image edge detection. We propose a new LOSW-based edge detection algorithm (LOSW-ED), which introduces a structural uncertainty–aware modulus maxima (SUAMM) to detect highly uncertain edge samples, ensuring robustness in complex and noisy environments. Additionally, LOSW-ED unifies multi-structure morphology and modulus maxima to fully exploit the complementary properties of low-frequency (LF) and high-frequency (HF) components, enabling multi-stage differential edge refinement. The experimental results show that the proposed LOSW and LOSW-ED algorithm has better performance in noise suppression and edge structure preservation. |
---|---|
ISSN: | 2227-7390 |