Optimal L(3,2,1)-labeling of trees

Given a graph G, an [Formula: see text]-labeling of G is an assignment f of non-negative integers (labels) to the vertices of G such that [Formula: see text] if [Formula: see text] (i = 1, 2, 3). For a non-negative integer k, a k-[Formula: see text]-labeling is an [Formula: see text]-labeling such t...

Full description

Saved in:
Bibliographic Details
Main Author: Xiaoling Zhang
Format: Article
Language:English
Published: Taylor & Francis Group 2024-09-01
Series:AKCE International Journal of Graphs and Combinatorics
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/09728600.2024.2358691
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given a graph G, an [Formula: see text]-labeling of G is an assignment f of non-negative integers (labels) to the vertices of G such that [Formula: see text] if [Formula: see text] (i = 1, 2, 3). For a non-negative integer k, a k-[Formula: see text]-labeling is an [Formula: see text]-labeling such that no label is greater than k. The [Formula: see text]-labeling number of G, denoted by [Formula: see text], is the smallest number k such that G has a k-[Formula: see text]-labeling. Chia proved that the [Formula: see text]-labeling number of a tree T with maximum degree Δ can have one of three values: [Formula: see text] and [Formula: see text]. This paper gives some sufficient conditions for [Formula: see text] and [Formula: see text], respectively. As a result, the [Formula: see text]-labeling numbers of complete m-ary trees, spiders and banana trees are completely determined.
ISSN:0972-8600
2543-3474