New Zealand pumicite as a precursor in producing alkaline cement with aluminate-based activators
This study investigates the activation of New Zealand pumicite (pumice powder) using sodium aluminate (NaAlO₂) solution, both alone and in combination with 10 M KOH solution, at various weight ratios of 1, 3, and 5, to produce alkali-activated cement. Compressive strength tests and microstructural a...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2024-12-01
|
| Series: | Case Studies in Construction Materials |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2214509524011598 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study investigates the activation of New Zealand pumicite (pumice powder) using sodium aluminate (NaAlO₂) solution, both alone and in combination with 10 M KOH solution, at various weight ratios of 1, 3, and 5, to produce alkali-activated cement. Compressive strength tests and microstructural analyses were conducted to assess the effects of activator/precursor ratios, activator type, aging time, and curing temperature (65°C for 72 hours or room temperature). The internal porosity of the pumicite played a key role in aluminosilicate phase dissolution and mobility, resulting in similar compressive strengths across different ratios. NaAlO₂ alone achieved compressive strengths of 60 MPa and 67 MPa after 4 and 65 days, respectively, while the binary solutions showed reduced strength with increased aging. Room temperature curing required almost three times the aging period to match the 28-day compressive strengths achieved after curing at 65°C for 72 hours. Microstructural analyses revealed that NaAlO₂ solution adjusted the Si/Al ratio, forming high-Al and high-Si gels as well as zeolite-A, underscoring its benefits. This study demonstrates the potential of using locally sourced New Zealand pumicite as a precursor in alkali-activated cement, particularly in regions lacking traditional industrial by-products. |
|---|---|
| ISSN: | 2214-5095 |