Predicting the 2020 Presidential Election

Saved in:
Bibliographic Details
Main Authors: Liberty Vittert, Ryan D. Enos, Steve Ansolabehere
Format: Article
Language:English
Published: The MIT Press 2021-02-01
Series:Harvard Data Science Review
Online Access:http://dx.doi.org/10.1162/99608f92.fed3dc89
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846130117284200448
author Liberty Vittert
Ryan D. Enos
Steve Ansolabehere
author_facet Liberty Vittert
Ryan D. Enos
Steve Ansolabehere
author_sort Liberty Vittert
collection DOAJ
format Article
id doaj-art-5b851d1f38cc4bd8b9df15c1bc84d92b
institution Kabale University
issn 2644-2353
language English
publishDate 2021-02-01
publisher The MIT Press
record_format Article
series Harvard Data Science Review
spelling doaj-art-5b851d1f38cc4bd8b9df15c1bc84d92b2024-12-09T20:13:47ZengThe MIT PressHarvard Data Science Review2644-23532021-02-012410.1162/99608f92.fed3dc89Predicting the 2020 Presidential ElectionLiberty VittertRyan D. EnosSteve Ansolabeherehttp://dx.doi.org/10.1162/99608f92.fed3dc89
spellingShingle Liberty Vittert
Ryan D. Enos
Steve Ansolabehere
Predicting the 2020 Presidential Election
Harvard Data Science Review
title Predicting the 2020 Presidential Election
title_full Predicting the 2020 Presidential Election
title_fullStr Predicting the 2020 Presidential Election
title_full_unstemmed Predicting the 2020 Presidential Election
title_short Predicting the 2020 Presidential Election
title_sort predicting the 2020 presidential election
url http://dx.doi.org/10.1162/99608f92.fed3dc89
work_keys_str_mv AT libertyvittert predictingthe2020presidentialelection
AT ryandenos predictingthe2020presidentialelection
AT steveansolabehere predictingthe2020presidentialelection