Fluoride emission rate analysis in proton exchange membrane water electrolyzer cells

The assessment of PEM water electrolyzer (PEMWE) degradation is essential for understanding their long-term durability and performance under real-world conditions. This research focuses on the fluoride emission rate (FER) as a crucial parameter during PEMWE operation. Two different FER analysis meth...

Full description

Saved in:
Bibliographic Details
Main Authors: Eveline Kuhnert, Mathias Heidinger, Anna Bernroitner, Özge Kiziltan, Erwin Berger, Viktor Hacker, Merit Bodner
Format: Article
Language:English
Published: Frontiers Media S.A. 2024-11-01
Series:Frontiers in Energy Research
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fenrg.2024.1457310/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The assessment of PEM water electrolyzer (PEMWE) degradation is essential for understanding their long-term durability and performance under real-world conditions. This research focuses on the fluoride emission rate (FER) as a crucial parameter during PEMWE operation. Two different FER analysis methods were evaluated, considering their feasibility and ease of integration into a PEMWE system. Various stressors were examined to gain insights into membrane degradation and explore potential mitigation strategies. The utilization of a photometric detection method allowed for the quantification of FER in each test. Results highlight a noteworthy correlation between applied stressors and FER, with variations depending on specific test conditions. An accelerated stress test conducted for 100 hours revealed a high FER at the anode of 0.83 μg h−1 cm−2 during the initial phase. Correspondingly, energy dispersive X-ray (EDX) mapping showed a reduction in Nafion™ content on the catalyst-coated membrane (CCM) surfaces, likely impacting proton conductivity and performance. Electrochemical results further support these findings, indicating performance changes corresponding to the observed membrane degradation.
ISSN:2296-598X