Multilayer neural network model for unbalanced data

Classification of unbalanced data often has low performance of the classifier because of the unbalance of data between classes.Using AUC (the area under the ROC curve) as evaluation index,combined with one class F-score feature selection and genetic algorithm,a multilayer neural network model was es...

Full description

Saved in:
Bibliographic Details
Main Authors: Xue ZHANG, Zhiguo SHI, Xuan LIU
Format: Article
Language:zho
Published: China InfoCom Media Group 2018-06-01
Series:物联网学报
Subjects:
Online Access:http://www.wlwxb.com.cn/zh/article/doi/10.11959/j.issn.2096-3750.2018.00055/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Classification of unbalanced data often has low performance of the classifier because of the unbalance of data between classes.Using AUC (the area under the ROC curve) as evaluation index,combined with one class F-score feature selection and genetic algorithm,a multilayer neural network model was established,and a more favorable feature set for unbalanced data classification was selected,so as to establish a deeper model suitable for classification of unbalanced data.Based on Tensor Flow,a multilayer neural network model was established.Using four different UCI datasets for testing,and comparing with the traditional machine learning algorithms such as Naive Bayesian,KNN,neural networks,etc,the performance of the proposed model built on the unbalanced data classification is more excellent.
ISSN:2096-3750