Solving Decision-Dependent Games by Learning From Feedback

This paper tackles the problem of solving stochastic optimization problems with a decision-dependent distribution in the setting of stochastic strongly-monotone games and when the distributional dependence is unknown. A two-stage approach is proposed, which initially involves estimating the distribu...

Full description

Saved in:
Bibliographic Details
Main Authors: Killian Wood, Ahmed S. Zamzam, Emiliano Dall'Anese
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Open Journal of Control Systems
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10564130/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper tackles the problem of solving stochastic optimization problems with a decision-dependent distribution in the setting of stochastic strongly-monotone games and when the distributional dependence is unknown. A two-stage approach is proposed, which initially involves estimating the distributional dependence on decision variables, and subsequently optimizing over the estimated distributional map. The paper presents guarantees for the approximation of the cost of each agent. Furthermore, a stochastic gradient-based algorithm is developed and analyzed for finding the Nash equilibrium in a distributed fashion. Numerical simulations are provided for a novel electric vehicle charging market formulation using real-world data.
ISSN:2694-085X