Exploring temperature-dependent photoluminescence dynamics of colloidal CdSe nanoplatelets using machine learning approach

Abstract The study explore machine learning (ML) techniques to predict temperature-dependent photoluminescence (PL) spectra in colloidal CdSe nanoplatelets (NPLs), leveraging polynomial regression models trained on experimental data from 85 to 270 K spanning temperatures to forecast PL spectra backw...

Full description

Saved in:
Bibliographic Details
Main Authors: Ivan P. Malashin, Daniil Daibagya, Vadim Tynchenko, Vladimir Nelyub, Aleksei Borodulin, Andrei Gantimurov, Alexandr Selyukov, Sergey Ambrozevich, Roman Vasiliev
Format: Article
Language:English
Published: Nature Portfolio 2024-12-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-024-81200-9
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846101333822668800
author Ivan P. Malashin
Daniil Daibagya
Vadim Tynchenko
Vladimir Nelyub
Aleksei Borodulin
Andrei Gantimurov
Alexandr Selyukov
Sergey Ambrozevich
Roman Vasiliev
author_facet Ivan P. Malashin
Daniil Daibagya
Vadim Tynchenko
Vladimir Nelyub
Aleksei Borodulin
Andrei Gantimurov
Alexandr Selyukov
Sergey Ambrozevich
Roman Vasiliev
author_sort Ivan P. Malashin
collection DOAJ
description Abstract The study explore machine learning (ML) techniques to predict temperature-dependent photoluminescence (PL) spectra in colloidal CdSe nanoplatelets (NPLs), leveraging polynomial regression models trained on experimental data from 85 to 270 K spanning temperatures to forecast PL spectra backward to 0 K and forward to 300 K. 6th-degree polynomial models with Tweedie regression were optimal for band energy ( $$B_1$$ ) predictions up to 300 K, while 9th-degree models with LassoLars and Linear Regression regressors were suitable for backward predictions to 0 K. For exciton energy ( $$B_2$$ ), the Lasso model of degree 5 and the Ridge model of degree 4 performed well up to 300 K, while the Tweedie model of degree 2 and Theil-Sen model of degree 2 showed promise for predictions to 0 K. Furthermore, a GA-based approach was utilized to fit experimental data to theoretical model of Fan and Varshni equations, facilitating a comparative analysis with the ML-predicted curves.
format Article
id doaj-art-5b13c91b33354680b69dbf1bf840152e
institution Kabale University
issn 2045-2322
language English
publishDate 2024-12-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj-art-5b13c91b33354680b69dbf1bf840152e2024-12-29T12:15:44ZengNature PortfolioScientific Reports2045-23222024-12-0114111410.1038/s41598-024-81200-9Exploring temperature-dependent photoluminescence dynamics of colloidal CdSe nanoplatelets using machine learning approachIvan P. Malashin0Daniil Daibagya1Vadim Tynchenko2Vladimir Nelyub3Aleksei Borodulin4Andrei Gantimurov5Alexandr Selyukov6Sergey Ambrozevich7Roman Vasiliev8Bauman Moscow State Technical UniversityBauman Moscow State Technical UniversityBauman Moscow State Technical UniversityBauman Moscow State Technical UniversityBauman Moscow State Technical UniversityBauman Moscow State Technical UniversityBauman Moscow State Technical UniversityBauman Moscow State Technical UniversityLomonosov Moscow State UniversityAbstract The study explore machine learning (ML) techniques to predict temperature-dependent photoluminescence (PL) spectra in colloidal CdSe nanoplatelets (NPLs), leveraging polynomial regression models trained on experimental data from 85 to 270 K spanning temperatures to forecast PL spectra backward to 0 K and forward to 300 K. 6th-degree polynomial models with Tweedie regression were optimal for band energy ( $$B_1$$ ) predictions up to 300 K, while 9th-degree models with LassoLars and Linear Regression regressors were suitable for backward predictions to 0 K. For exciton energy ( $$B_2$$ ), the Lasso model of degree 5 and the Ridge model of degree 4 performed well up to 300 K, while the Tweedie model of degree 2 and Theil-Sen model of degree 2 showed promise for predictions to 0 K. Furthermore, a GA-based approach was utilized to fit experimental data to theoretical model of Fan and Varshni equations, facilitating a comparative analysis with the ML-predicted curves.https://doi.org/10.1038/s41598-024-81200-9Machine learningCdSeNanoplateletsLuminescenceTemporal dynamics
spellingShingle Ivan P. Malashin
Daniil Daibagya
Vadim Tynchenko
Vladimir Nelyub
Aleksei Borodulin
Andrei Gantimurov
Alexandr Selyukov
Sergey Ambrozevich
Roman Vasiliev
Exploring temperature-dependent photoluminescence dynamics of colloidal CdSe nanoplatelets using machine learning approach
Scientific Reports
Machine learning
CdSe
Nanoplatelets
Luminescence
Temporal dynamics
title Exploring temperature-dependent photoluminescence dynamics of colloidal CdSe nanoplatelets using machine learning approach
title_full Exploring temperature-dependent photoluminescence dynamics of colloidal CdSe nanoplatelets using machine learning approach
title_fullStr Exploring temperature-dependent photoluminescence dynamics of colloidal CdSe nanoplatelets using machine learning approach
title_full_unstemmed Exploring temperature-dependent photoluminescence dynamics of colloidal CdSe nanoplatelets using machine learning approach
title_short Exploring temperature-dependent photoluminescence dynamics of colloidal CdSe nanoplatelets using machine learning approach
title_sort exploring temperature dependent photoluminescence dynamics of colloidal cdse nanoplatelets using machine learning approach
topic Machine learning
CdSe
Nanoplatelets
Luminescence
Temporal dynamics
url https://doi.org/10.1038/s41598-024-81200-9
work_keys_str_mv AT ivanpmalashin exploringtemperaturedependentphotoluminescencedynamicsofcolloidalcdsenanoplateletsusingmachinelearningapproach
AT daniildaibagya exploringtemperaturedependentphotoluminescencedynamicsofcolloidalcdsenanoplateletsusingmachinelearningapproach
AT vadimtynchenko exploringtemperaturedependentphotoluminescencedynamicsofcolloidalcdsenanoplateletsusingmachinelearningapproach
AT vladimirnelyub exploringtemperaturedependentphotoluminescencedynamicsofcolloidalcdsenanoplateletsusingmachinelearningapproach
AT alekseiborodulin exploringtemperaturedependentphotoluminescencedynamicsofcolloidalcdsenanoplateletsusingmachinelearningapproach
AT andreigantimurov exploringtemperaturedependentphotoluminescencedynamicsofcolloidalcdsenanoplateletsusingmachinelearningapproach
AT alexandrselyukov exploringtemperaturedependentphotoluminescencedynamicsofcolloidalcdsenanoplateletsusingmachinelearningapproach
AT sergeyambrozevich exploringtemperaturedependentphotoluminescencedynamicsofcolloidalcdsenanoplateletsusingmachinelearningapproach
AT romanvasiliev exploringtemperaturedependentphotoluminescencedynamicsofcolloidalcdsenanoplateletsusingmachinelearningapproach