Probing SARS-CoV-2 membrane binding peptide via single-molecule AFM-based force spectroscopy

Abstract The SARS-CoV-2 spike protein’s membrane-binding domain bridges the viral and host cell membrane, a critical step in triggering membrane fusion. Here, we investigate how the SARS-CoV-2 spike protein interacts with host cell membranes, focusing on a membrane-binding peptide (MBP) located near...

Full description

Saved in:
Bibliographic Details
Main Authors: Qingrong Zhang, Raissa S. L. Rosa, Ankita Ray, Kimberley Durlet, Gol Mohammad Dorrazehi, Rafael C. Bernardi, David Alsteens
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-55358-9
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841559282137432064
author Qingrong Zhang
Raissa S. L. Rosa
Ankita Ray
Kimberley Durlet
Gol Mohammad Dorrazehi
Rafael C. Bernardi
David Alsteens
author_facet Qingrong Zhang
Raissa S. L. Rosa
Ankita Ray
Kimberley Durlet
Gol Mohammad Dorrazehi
Rafael C. Bernardi
David Alsteens
author_sort Qingrong Zhang
collection DOAJ
description Abstract The SARS-CoV-2 spike protein’s membrane-binding domain bridges the viral and host cell membrane, a critical step in triggering membrane fusion. Here, we investigate how the SARS-CoV-2 spike protein interacts with host cell membranes, focusing on a membrane-binding peptide (MBP) located near the TMPRSS2 cleavage site. Through in vitro and computational studies, we examine both primed (TMPRSS2-cleaved) and unprimed versions of the MBP, as well as the influence of its conserved disulfide bridge on membrane binding. Our results show that the MBP preferentially associates with cholesterol-rich membranes, and we find that cholesterol depletion significantly reduces viral infectivity. Furthermore, we observe that the disulfide bridge stabilizes the MBP’s interaction with the membrane, suggesting a structural role in viral entry. Together, these findings highlight the importance of membrane composition and peptide structure in SARS-CoV-2 infectivity and suggest that targeting the disulfide bridge could provide a therapeutic strategy against infection.
format Article
id doaj-art-5a0e01ae4c6d480b9d44cffbd707454c
institution Kabale University
issn 2041-1723
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-5a0e01ae4c6d480b9d44cffbd707454c2025-01-05T12:37:40ZengNature PortfolioNature Communications2041-17232025-01-0116111410.1038/s41467-024-55358-9Probing SARS-CoV-2 membrane binding peptide via single-molecule AFM-based force spectroscopyQingrong Zhang0Raissa S. L. Rosa1Ankita Ray2Kimberley Durlet3Gol Mohammad Dorrazehi4Rafael C. Bernardi5David Alsteens6Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07Department of Chemistry and Biochemistry, Auburn UniversityLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07Department of Chemistry and Biochemistry, Auburn UniversityLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07Abstract The SARS-CoV-2 spike protein’s membrane-binding domain bridges the viral and host cell membrane, a critical step in triggering membrane fusion. Here, we investigate how the SARS-CoV-2 spike protein interacts with host cell membranes, focusing on a membrane-binding peptide (MBP) located near the TMPRSS2 cleavage site. Through in vitro and computational studies, we examine both primed (TMPRSS2-cleaved) and unprimed versions of the MBP, as well as the influence of its conserved disulfide bridge on membrane binding. Our results show that the MBP preferentially associates with cholesterol-rich membranes, and we find that cholesterol depletion significantly reduces viral infectivity. Furthermore, we observe that the disulfide bridge stabilizes the MBP’s interaction with the membrane, suggesting a structural role in viral entry. Together, these findings highlight the importance of membrane composition and peptide structure in SARS-CoV-2 infectivity and suggest that targeting the disulfide bridge could provide a therapeutic strategy against infection.https://doi.org/10.1038/s41467-024-55358-9
spellingShingle Qingrong Zhang
Raissa S. L. Rosa
Ankita Ray
Kimberley Durlet
Gol Mohammad Dorrazehi
Rafael C. Bernardi
David Alsteens
Probing SARS-CoV-2 membrane binding peptide via single-molecule AFM-based force spectroscopy
Nature Communications
title Probing SARS-CoV-2 membrane binding peptide via single-molecule AFM-based force spectroscopy
title_full Probing SARS-CoV-2 membrane binding peptide via single-molecule AFM-based force spectroscopy
title_fullStr Probing SARS-CoV-2 membrane binding peptide via single-molecule AFM-based force spectroscopy
title_full_unstemmed Probing SARS-CoV-2 membrane binding peptide via single-molecule AFM-based force spectroscopy
title_short Probing SARS-CoV-2 membrane binding peptide via single-molecule AFM-based force spectroscopy
title_sort probing sars cov 2 membrane binding peptide via single molecule afm based force spectroscopy
url https://doi.org/10.1038/s41467-024-55358-9
work_keys_str_mv AT qingrongzhang probingsarscov2membranebindingpeptideviasinglemoleculeafmbasedforcespectroscopy
AT raissaslrosa probingsarscov2membranebindingpeptideviasinglemoleculeafmbasedforcespectroscopy
AT ankitaray probingsarscov2membranebindingpeptideviasinglemoleculeafmbasedforcespectroscopy
AT kimberleydurlet probingsarscov2membranebindingpeptideviasinglemoleculeafmbasedforcespectroscopy
AT golmohammaddorrazehi probingsarscov2membranebindingpeptideviasinglemoleculeafmbasedforcespectroscopy
AT rafaelcbernardi probingsarscov2membranebindingpeptideviasinglemoleculeafmbasedforcespectroscopy
AT davidalsteens probingsarscov2membranebindingpeptideviasinglemoleculeafmbasedforcespectroscopy