Equivariant Holomorphic Hermitian Vector Bundles over a Projective Space

The aim here is to describe all isomorphism classes of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1&l...

Full description

Saved in:
Bibliographic Details
Main Authors: Indranil Biswas, Francois-Xavier Machu
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/23/3757
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846124131286777856
author Indranil Biswas
Francois-Xavier Machu
author_facet Indranil Biswas
Francois-Xavier Machu
author_sort Indranil Biswas
collection DOAJ
description The aim here is to describe all isomorphism classes of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-equivariant Hermitian holomorphic vector bundles on the complex projective space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">C</mi><msup><mrow><mi mathvariant="double-struck">P</mi></mrow><mi>n</mi></msup></mrow></semantics></math></inline-formula>. If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mspace width="0.166667em"></mspace><mo>⊂</mo><mspace width="0.166667em"></mspace><mi>SU</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> is the isotropy subgroup of a chosen point <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>x</mi><mn>0</mn></msub><mspace width="0.166667em"></mspace><mo>∈</mo><mspace width="0.166667em"></mspace><mi mathvariant="double-struck">C</mi><msup><mrow><mi mathvariant="double-struck">P</mi></mrow><mi>n</mi></msup></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ρ</mi><mspace width="0.166667em"></mspace><mo>:</mo><mspace width="0.166667em"></mspace><mi>G</mi><mspace width="0.166667em"></mspace><mo>⟶</mo><mspace width="0.166667em"></mspace><mi>GL</mi><mo>(</mo><mi>V</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a unitary representation, we obtain <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-equivariant holomorphic Hermitian vector bundles on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">C</mi><msup><mrow><mi mathvariant="double-struck">P</mi></mrow><mi>n</mi></msup></mrow></semantics></math></inline-formula>. Next, given any <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mspace width="0.166667em"></mspace><mo>∈</mo><mspace width="0.166667em"></mspace><mi>End</mi><mrow><mo>(</mo><msub><mi>V</mi><mi>ρ</mi></msub><mo>)</mo></mrow><mo>⊗</mo><msup><mrow><mo>(</mo><msubsup><mi>T</mi><msub><mi>z</mi><mn>0</mn></msub><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msubsup><mi mathvariant="double-struck">C</mi><msup><mrow><mi mathvariant="double-struck">P</mi></mrow><mi>n</mi></msup><mo>)</mo></mrow><mo>∗</mo></msup></mrow></semantics></math></inline-formula> satisfying certain conditions, a new structure of an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-equivariant holomorphic Hermitian vector bundle on this underlying <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>∞</mo></msup></semantics></math></inline-formula> holomorphic Hermitian bundle is obtained. It is shown that all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-equivariant holomorphic Hermitian vector bundles on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">C</mi><msup><mrow><mi mathvariant="double-struck">P</mi></mrow><mi>n</mi></msup></mrow></semantics></math></inline-formula> arise this way.
format Article
id doaj-art-59f07283436a4b0497d2b07e097e2025
institution Kabale University
issn 2227-7390
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-59f07283436a4b0497d2b07e097e20252024-12-13T16:27:39ZengMDPI AGMathematics2227-73902024-11-011223375710.3390/math12233757Equivariant Holomorphic Hermitian Vector Bundles over a Projective SpaceIndranil Biswas0Francois-Xavier Machu1Department of Mathematics, Shiv Nadar University, NH91, Tehsil Dadri, Greater Noida 201314, Uttar Pradesh, IndiaEcole Supérieure d’Informatique Électronique Automatique (ESIEA), 74 bis Av. Maurice Thorez, 94200 Ivry-sur-Seine, FranceThe aim here is to describe all isomorphism classes of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-equivariant Hermitian holomorphic vector bundles on the complex projective space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">C</mi><msup><mrow><mi mathvariant="double-struck">P</mi></mrow><mi>n</mi></msup></mrow></semantics></math></inline-formula>. If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mspace width="0.166667em"></mspace><mo>⊂</mo><mspace width="0.166667em"></mspace><mi>SU</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> is the isotropy subgroup of a chosen point <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>x</mi><mn>0</mn></msub><mspace width="0.166667em"></mspace><mo>∈</mo><mspace width="0.166667em"></mspace><mi mathvariant="double-struck">C</mi><msup><mrow><mi mathvariant="double-struck">P</mi></mrow><mi>n</mi></msup></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ρ</mi><mspace width="0.166667em"></mspace><mo>:</mo><mspace width="0.166667em"></mspace><mi>G</mi><mspace width="0.166667em"></mspace><mo>⟶</mo><mspace width="0.166667em"></mspace><mi>GL</mi><mo>(</mo><mi>V</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a unitary representation, we obtain <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-equivariant holomorphic Hermitian vector bundles on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">C</mi><msup><mrow><mi mathvariant="double-struck">P</mi></mrow><mi>n</mi></msup></mrow></semantics></math></inline-formula>. Next, given any <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mspace width="0.166667em"></mspace><mo>∈</mo><mspace width="0.166667em"></mspace><mi>End</mi><mrow><mo>(</mo><msub><mi>V</mi><mi>ρ</mi></msub><mo>)</mo></mrow><mo>⊗</mo><msup><mrow><mo>(</mo><msubsup><mi>T</mi><msub><mi>z</mi><mn>0</mn></msub><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msubsup><mi mathvariant="double-struck">C</mi><msup><mrow><mi mathvariant="double-struck">P</mi></mrow><mi>n</mi></msup><mo>)</mo></mrow><mo>∗</mo></msup></mrow></semantics></math></inline-formula> satisfying certain conditions, a new structure of an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-equivariant holomorphic Hermitian vector bundle on this underlying <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>∞</mo></msup></semantics></math></inline-formula> holomorphic Hermitian bundle is obtained. It is shown that all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-equivariant holomorphic Hermitian vector bundles on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">C</mi><msup><mrow><mi mathvariant="double-struck">P</mi></mrow><mi>n</mi></msup></mrow></semantics></math></inline-formula> arise this way.https://www.mdpi.com/2227-7390/12/23/3757projective spaceequivariant holomorphic Hermitian vector bundleunitary group
spellingShingle Indranil Biswas
Francois-Xavier Machu
Equivariant Holomorphic Hermitian Vector Bundles over a Projective Space
Mathematics
projective space
equivariant holomorphic Hermitian vector bundle
unitary group
title Equivariant Holomorphic Hermitian Vector Bundles over a Projective Space
title_full Equivariant Holomorphic Hermitian Vector Bundles over a Projective Space
title_fullStr Equivariant Holomorphic Hermitian Vector Bundles over a Projective Space
title_full_unstemmed Equivariant Holomorphic Hermitian Vector Bundles over a Projective Space
title_short Equivariant Holomorphic Hermitian Vector Bundles over a Projective Space
title_sort equivariant holomorphic hermitian vector bundles over a projective space
topic projective space
equivariant holomorphic Hermitian vector bundle
unitary group
url https://www.mdpi.com/2227-7390/12/23/3757
work_keys_str_mv AT indranilbiswas equivariantholomorphichermitianvectorbundlesoveraprojectivespace
AT francoisxaviermachu equivariantholomorphichermitianvectorbundlesoveraprojectivespace