A benchmark for computational analysis of animal behavior, using animal-borne tags
Abstract Background Animal-borne sensors (‘bio-loggers’) can record a suite of kinematic and environmental data, which are used to elucidate animal ecophysiology and improve conservation efforts. Machine learning techniques are used for interpreting the large amounts of data recorded by bio-loggers,...
Saved in:
| Main Authors: | Benjamin Hoffman, Maddie Cusimano, Vittorio Baglione, Daniela Canestrari, Damien Chevallier, Dominic L. DeSantis, Lorène Jeantet, Monique A. Ladds, Takuya Maekawa, Vicente Mata-Silva, Víctor Moreno-González, Anthony M. Pagano, Eva Trapote, Outi Vainio, Antti Vehkaoja, Ken Yoda, Katherine Zacarian, Ari Friedlaender |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
BMC
2024-12-01
|
| Series: | Movement Ecology |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s40462-024-00511-8 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Plugging biologging into animal welfare: An opportunity for advancing wild animal welfare science
by: Michaël Beaulieu, et al.
Published: (2024-12-01) -
Temperature loggers decrease costs of determining bird nest survival
by: Flavio Sutti, et al.
Published: (2014-12-01) -
Análisis bioclimático de tres edificios diseñados por Gilberto Gatto Sobral. Caso de estudio Universidad Central del Ecuador
by: Ursula Freire Castro
Published: (2024-07-01) -
Pengaruh Cahaya Ruang pada Pembangkitan Energi Solar Panel
by: Sapriesty Nainy Sari, et al.
Published: (2022-08-01) -
Data Loggers for High-Temperature Industrial Environments
by: Roberto Cecchi, et al.
Published: (2024-01-01)