Implementation of fatigue model for unidirectional laminate based on finite element analysis: theory and practice
The aim of this study is to deal with the simulation of intralaminar fatigue damage in unidirectional composite under multi-axial and variable amplitude loadings. The variable amplitude and multi-axial loading is accounted for by using the damage hysteresis operator based on Brokate method [6]. The...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Gruppo Italiano Frattura
2016-10-01
|
Series: | Fracture and Structural Integrity |
Subjects: | |
Online Access: | http://www.gruppofrattura.it/pdf/rivista/numero38/numero_38_art_25.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841561408630685696 |
---|---|
author | D. Carrella-Payan B. Magneville M. Hack C. Lequesne T. Naito Y. Urushiyama W. Yamazaki T. Yokozeki W. Van Paepegem |
author_facet | D. Carrella-Payan B. Magneville M. Hack C. Lequesne T. Naito Y. Urushiyama W. Yamazaki T. Yokozeki W. Van Paepegem |
author_sort | D. Carrella-Payan |
collection | DOAJ |
description | The aim of this study is to deal with the simulation of intralaminar fatigue damage in unidirectional composite under multi-axial and variable amplitude loadings. The variable amplitude and multi-axial loading is accounted for by using the damage hysteresis operator based on Brokate method [6]. The proposed damage model for fatigue is based on stiffness degradation laws from Van Paepegem combined with the ‘damage’ cycle jump approach extended to deal with unidirectional carbon fibres. The parameter identification method is here presented and parameter sensitivities are discussed. The initial static damage of the material is accounted for by using the Ladevèze damage model and the permanent shear strain accumulation based on Van Paepegem’s formulation. This approach is implemented into commercial software (Siemens PLM). The validation case is run on a bending test coupon (with arbitrary stacking sequence and load level) in order to minimise the risk of inter-laminar damages. This intra-laminar fatigue damage model combined efficient methods with a low number of tests to identify the parameters of the stiffness degradation law, this overall procedure for fatigue life prediction is demonstrated to be cost efficient at industrial level. This work concludes on the next challenges to be addressed (validation tests, multiple-loadings validation, failure criteria, inter-laminar damages…). |
format | Article |
id | doaj-art-596fdaba0cc6498ab0234d19610057aa |
institution | Kabale University |
issn | 1971-8993 1971-8993 |
language | English |
publishDate | 2016-10-01 |
publisher | Gruppo Italiano Frattura |
record_format | Article |
series | Fracture and Structural Integrity |
spelling | doaj-art-596fdaba0cc6498ab0234d19610057aa2025-01-03T01:41:01ZengGruppo Italiano FratturaFracture and Structural Integrity1971-89931971-89932016-10-01103818419010.3221/IGF-ESIS.38.25Implementation of fatigue model for unidirectional laminate based on finite element analysis: theory and practiceD. Carrella-Payan0B. Magneville1M. Hack2C. Lequesne 3T. Naito4 Y. Urushiyama 5W. Yamazaki6 T. Yokozeki 7W. Van Paepegem 8Siemens PLM Software Siemens PLM Software Siemens PLM Software Siemens PLM Software Honda R&D Co Ltd, Tochigi, Japan Honda R&D Co Ltd, Tochigi, Japan University of Tokyo, JapanUniversity of Tokyo, JapanGhent Univeristy, BelgiumThe aim of this study is to deal with the simulation of intralaminar fatigue damage in unidirectional composite under multi-axial and variable amplitude loadings. The variable amplitude and multi-axial loading is accounted for by using the damage hysteresis operator based on Brokate method [6]. The proposed damage model for fatigue is based on stiffness degradation laws from Van Paepegem combined with the ‘damage’ cycle jump approach extended to deal with unidirectional carbon fibres. The parameter identification method is here presented and parameter sensitivities are discussed. The initial static damage of the material is accounted for by using the Ladevèze damage model and the permanent shear strain accumulation based on Van Paepegem’s formulation. This approach is implemented into commercial software (Siemens PLM). The validation case is run on a bending test coupon (with arbitrary stacking sequence and load level) in order to minimise the risk of inter-laminar damages. This intra-laminar fatigue damage model combined efficient methods with a low number of tests to identify the parameters of the stiffness degradation law, this overall procedure for fatigue life prediction is demonstrated to be cost efficient at industrial level. This work concludes on the next challenges to be addressed (validation tests, multiple-loadings validation, failure criteria, inter-laminar damages…).http://www.gruppofrattura.it/pdf/rivista/numero38/numero_38_art_25.pdfCompositeFatigueVariable AmplitudeStiffness degradation |
spellingShingle | D. Carrella-Payan B. Magneville M. Hack C. Lequesne T. Naito Y. Urushiyama W. Yamazaki T. Yokozeki W. Van Paepegem Implementation of fatigue model for unidirectional laminate based on finite element analysis: theory and practice Fracture and Structural Integrity Composite Fatigue Variable Amplitude Stiffness degradation |
title | Implementation of fatigue model for unidirectional laminate based on finite element analysis: theory and practice |
title_full | Implementation of fatigue model for unidirectional laminate based on finite element analysis: theory and practice |
title_fullStr | Implementation of fatigue model for unidirectional laminate based on finite element analysis: theory and practice |
title_full_unstemmed | Implementation of fatigue model for unidirectional laminate based on finite element analysis: theory and practice |
title_short | Implementation of fatigue model for unidirectional laminate based on finite element analysis: theory and practice |
title_sort | implementation of fatigue model for unidirectional laminate based on finite element analysis theory and practice |
topic | Composite Fatigue Variable Amplitude Stiffness degradation |
url | http://www.gruppofrattura.it/pdf/rivista/numero38/numero_38_art_25.pdf |
work_keys_str_mv | AT dcarrellapayan implementationoffatiguemodelforunidirectionallaminatebasedonfiniteelementanalysistheoryandpractice AT bmagneville implementationoffatiguemodelforunidirectionallaminatebasedonfiniteelementanalysistheoryandpractice AT mhack implementationoffatiguemodelforunidirectionallaminatebasedonfiniteelementanalysistheoryandpractice AT clequesne implementationoffatiguemodelforunidirectionallaminatebasedonfiniteelementanalysistheoryandpractice AT tnaito implementationoffatiguemodelforunidirectionallaminatebasedonfiniteelementanalysistheoryandpractice AT yurushiyama implementationoffatiguemodelforunidirectionallaminatebasedonfiniteelementanalysistheoryandpractice AT wyamazaki implementationoffatiguemodelforunidirectionallaminatebasedonfiniteelementanalysistheoryandpractice AT tyokozeki implementationoffatiguemodelforunidirectionallaminatebasedonfiniteelementanalysistheoryandpractice AT wvanpaepegem implementationoffatiguemodelforunidirectionallaminatebasedonfiniteelementanalysistheoryandpractice |