Soluble β-Amyloid Oligomers Selectively Upregulate TRPC3 in Excitatory Neurons via Calcineurin-Coupled NFAT
To investigate how dysregulated transient receptor potential canonical channels (TRPCs) are associated with Alzheimer’s disease (AD), we challenged primary neurons with amyloid-β (Aβ). Both the naturally secreted or synthetic Aβ oligomers (AβOs) induced long-lasting increased TRPC3 and downregulated...
Saved in:
| Main Authors: | , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Cells |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-4409/14/11/843 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | To investigate how dysregulated transient receptor potential canonical channels (TRPCs) are associated with Alzheimer’s disease (AD), we challenged primary neurons with amyloid-β (Aβ). Both the naturally secreted or synthetic Aβ oligomers (AβOs) induced long-lasting increased TRPC3 and downregulated the TRPC6 expression in mature excitatory neurons (CaMKIIα-high) via a Ca<sup>2+</sup>-dependent calcineurin-coupled NFAT transcriptionally and calpain-mediated protein degradation, respectively. The TRPC3 expression was also found to be upregulated in pyramidal neurons of human AD brains. The selective downregulation of the <i>Trpc6</i> gene induced synaptotoxicity, while no significant effect was observed from the Trpc3-targeting siRNA, suggesting potentially differential roles of TRPC3 and 6 in modulating the synaptic morphology and functions. Electrophysiological recordings of mouse hippocampal slices overexpressing TRPC3 revealed increased neuronal hyperactivity upon the TRPC3 channel activation by its agonist. Furthermore, the AβO-mediated synaptotoxicity appeared to be positively correlated with the degrees of the induced dendritic Ca<sup>2+</sup> flux in neurons, which was completely prevented by the co-treatment with two pyrazole-based TRPC3-selective antagonists Pyr3 or Pyr10. Taken together, our findings suggest that the aberrantly upregulated TRPC3 is another ion channel critically contributing to the process of AβO-induced Ca<sup>2+</sup> overload, neuronal hyperexcitation, and synaptotoxicity, thus representing a potential therapeutic target of AD. |
|---|---|
| ISSN: | 2073-4409 |