Characterizing coherent errors using matrix-element amplification

Abstract Repeating a gate sequence multiple times amplifies systematic errors coherently, making it a useful tool for characterizing quantum gates. However, the precision of such an approach is limited by low-frequency noise, while its efficiency is hindered by time-consuming scans required to match...

Full description

Saved in:
Bibliographic Details
Main Authors: Jonathan A. Gross, Élie Genois, Dripto M. Debroy, Yaxing Zhang, Wojciech Mruczkiewicz, Ze-Pei Cian, Zhang Jiang
Format: Article
Language:English
Published: Nature Portfolio 2024-11-01
Series:npj Quantum Information
Online Access:https://doi.org/10.1038/s41534-024-00917-7
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Repeating a gate sequence multiple times amplifies systematic errors coherently, making it a useful tool for characterizing quantum gates. However, the precision of such an approach is limited by low-frequency noise, while its efficiency is hindered by time-consuming scans required to match up the phases of the off-diagonal matrix elements being amplified. Here, we overcome both challenges by interleaving the gate of interest with dynamical decoupling sequences in a protocol we call Matrix-Element Amplification using Dynamical Decoupling (MEADD). Using frequency-tunable superconducting qubits from a Google Sycamore quantum processor, we experimentally demonstrate that MEADD surpasses the accuracy and precision of existing characterization protocols for estimating systematic errors in single- and two-qubit gates. We use MEADD to estimate coherent parameters of CZ gates with 5 to 10 times the precision of existing methods and to characterize previously undetectable coherent crosstalk, reaching a precision below one milliradian.
ISSN:2056-6387