Resonant inelastic tunneling using multiple metallic quantum wells
Tunnel nanojunctions based on inelastic electron tunneling (IET) have been heralded as a breakthrough for ultra-fast integrated light sources. However, the majority of electrons tend to tunnel through a junction elastically, resulting in weak photon-emission power and limited efficiency, which have...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
De Gruyter
2023-06-01
|
| Series: | Nanophotonics |
| Subjects: | |
| Online Access: | https://doi.org/10.1515/nanoph-2023-0231 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Tunnel nanojunctions based on inelastic electron tunneling (IET) have been heralded as a breakthrough for ultra-fast integrated light sources. However, the majority of electrons tend to tunnel through a junction elastically, resulting in weak photon-emission power and limited efficiency, which have hindered their practical applications to date. Resonant tunneling has been proposed as a way to alleviate this limitation, but photon-emissions under resonant tunneling conditions have remained unsatisfactory for practical IET-based light sources due to the inherent contradiction between high photon-emission efficiency and power. In this work, we introduce a novel approach that leverages much stronger resonant tunneling enhancement achieved by multiple metallic quantum wells, which has enabled the internal quantum efficiency to reach ∼1 and photon-emission power to reach ∼0.8 µW/µm2. Furthermore, this method is applicable with different electronic lifetimes ranging from 10 fs to 100 fs simultaneously, bringing practical implementation of IET-based sources one step closer to reality. |
|---|---|
| ISSN: | 2192-8614 |