Development and Evaluation of User‐Friendly Modeled Approach for Sustainable Polymer Membranes for Advanced Hemodialysis

Abstract Hemodialysis is crucial for patients with end‐stage renal disease, yet evaluating its operating parameters often requires complex mathematical models. To simplify this process, user‐friendly modules have been developed to accurately assess key parameters with minimal inputs, enabling users...

Full description

Saved in:
Bibliographic Details
Main Authors: Ahmed Khan, Zaib Jahan, Muhammad Ahsan, Muhammad Bilal Khan Niazi, Muhammad Nouman Aslam Khan, Ahmed Sayed M. Metwally, Farooq Sher
Format: Article
Language:English
Published: Wiley-VCH 2025-01-01
Series:Advanced Materials Interfaces
Subjects:
Online Access:https://doi.org/10.1002/admi.202400435
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Hemodialysis is crucial for patients with end‐stage renal disease, yet evaluating its operating parameters often requires complex mathematical models. To simplify this process, user‐friendly modules have been developed to accurately assess key parameters with minimal inputs, enabling users to track disease prognosis. These modules incorporate governing equations and allow straightforward analysis. Validation against experimental data from polymer membrane studies demonstrated that at a blood flow rate of 300 mL min−1, the model predicted a clearance of 262 mL min−1, showing 7% difference from the actual value of 281 mL min−1. At a dialysate flow of 400 mL min−1, the model's predicted clearance was 286.47 mL min−1, with only a 1% difference compared to previous model. The module also showed 40% higher clearance in counter‐current flow compared to co‐current, with a 47% difference at 400 mL min−1 dialysate flow. Increasing the hollow fibre length from 27 to 50 cm led to a 4% clearance increase. Additionally, increasing residual renal clearance by 0.5 mL min−1 doubled the standard Kt V−1 Kt/V, and similar effects were seen by increasing weekly hemodialysis sessions. The app allows simulations, plots, and comparisons with minimal inputs and can be integrated into MATLAB or other platforms, benefiting both patients and researchers in prognosis and treatment analysis.
ISSN:2196-7350