Analysis on hot deformation behavior and microstructural evolution of TA10 alloy smelted with the electron beam furnace
This article uses EB furnace to prepare TA10 alloy ingots with higher purity. Studying their hot deformation behavior and microstructure evolution can provide theoretical support for practical processes.The hot deformation behavior of TA10 alloy smelted via an electron beam furnace has been studied...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IOP Publishing
2024-01-01
|
| Series: | Materials Research Express |
| Subjects: | |
| Online Access: | https://doi.org/10.1088/2053-1591/ad966a |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This article uses EB furnace to prepare TA10 alloy ingots with higher purity. Studying their hot deformation behavior and microstructure evolution can provide theoretical support for practical processes.The hot deformation behavior of TA10 alloy smelted via an electron beam furnace has been studied using thermal deformation experiments, the experiments were conducted from 800 °C to 1,050 °C, from 0.01 s ^−1 to 1 s ^−1 and a reduction to 60%. According to Arrhenius and Zener-Hollomon models, the constitutive equation can be constructed. TEM and EBSD aimed at exploring the microstructures and microstructural evolution, respectively. When deformed at the temperatures below the phase transition point, grain boundaries converted to large-angle gradually. The textural strength reduced when the strain rate increased. Besides, the recrystallization rate was relatively small, mainly dynamic recovery, and there was a tendency to turn into dynamic recrystallization. At the temperature higher than the phase transition point, the textural strength increased, the recrystallization rate was small, and the dynamic recovery was partially enhanced. |
|---|---|
| ISSN: | 2053-1591 |