Two-Level Supervised Network for Small Ship Target Detection in Shallow Thin Cloud-Covered Optical Satellite Images

Ship detection under cloudy and foggy conditions is a significant challenge in remote sensing satellite applications, as cloud cover often reduces contrast between targets and backgrounds. Additionally, ships are small and affected by noise, making them difficult to detect. This paper proposes a Clo...

Full description

Saved in:
Bibliographic Details
Main Authors: Fangjian Liu, Fengyi Zhang, Mi Wang, Qizhi Xu
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/14/24/11558
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ship detection under cloudy and foggy conditions is a significant challenge in remote sensing satellite applications, as cloud cover often reduces contrast between targets and backgrounds. Additionally, ships are small and affected by noise, making them difficult to detect. This paper proposes a Cloud Removal and Target Detection (CRTD) network to detect small ships in images with thin cloud cover. The process begins with a Thin Cloud Removal (TCR) module for image preprocessing. The preprocessed data are then fed into a Small Target Detection (STD) module. To improve target–background contrast, we introduce a Target Enhancement module. The TCR and STD modules are integrated through a dual-stage supervision network, which hierarchically processes the detection task to enhance data quality, minimizing the impact of thin clouds. Experiments on the GaoFen-4 satellite dataset show that the proposed method outperforms existing detectors, achieving an average precision (AP) of 88.9%.
ISSN:2076-3417