An Analysis of Vaccine-Related Sentiments on Twitter (X) from Development to Deployment of COVID-19 Vaccines

Anti-vaccine sentiments have been well-known and reported throughout the history of viral outbreaks and vaccination programmes. The COVID-19 pandemic caused fear and uncertainty about vaccines, which has been well expressed on social media platforms such as Twitter (X). We analyse sentiments from th...

Full description

Saved in:
Bibliographic Details
Main Authors: Rohitash Chandra, Jayesh Sonawane, Jahnavi Lande
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Big Data and Cognitive Computing
Subjects:
Online Access:https://www.mdpi.com/2504-2289/8/12/186
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Anti-vaccine sentiments have been well-known and reported throughout the history of viral outbreaks and vaccination programmes. The COVID-19 pandemic caused fear and uncertainty about vaccines, which has been well expressed on social media platforms such as Twitter (X). We analyse sentiments from the beginning of the COVID-19 pandemic and study the public behaviour on X during the planning, development, and deployment of vaccines expressed in tweets worldwide using a sentiment analysis framework via deep learning models. We provide visualisation and analysis of anti-vaccine sentiments throughout the COVID-19 pandemic. We review the nature of the sentiments expressed with the number of tweets and monthly COVID-19 infections. Our results show a link between the number of tweets, the number of cases, and the change in sentiment polarity scores during major waves of COVID-19. We also find that the first half of the pandemic had drastic changes in the sentiment polarity scores that later stabilised, implying that the vaccine rollout impacted the nature of discussions on social media.
ISSN:2504-2289