Eccentric <i>p</i>-Summing Lipschitz Operators and Integral Inequalities on Metric Spaces and Graphs

The extension of the concept of <i>p</i>-summability for linear operators to the context of Lipschitz operators on metric spaces has been extensively studied in recent years. This research primarily uses the linearization of the metric space <i>M</i> afforded by the associate...

Full description

Saved in:
Bibliographic Details
Main Authors: Roger Arnau, Enrique A. Sánchez Pérez, Sergi Sanjuan
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/13/11/760
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846154316832833536
author Roger Arnau
Enrique A. Sánchez Pérez
Sergi Sanjuan
author_facet Roger Arnau
Enrique A. Sánchez Pérez
Sergi Sanjuan
author_sort Roger Arnau
collection DOAJ
description The extension of the concept of <i>p</i>-summability for linear operators to the context of Lipschitz operators on metric spaces has been extensively studied in recent years. This research primarily uses the linearization of the metric space <i>M</i> afforded by the associated Arens–Eells space, along with the duality between <i>M</i> and the metric dual space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>M</mi><mo>#</mo></msup></semantics></math></inline-formula> defined by the real-valued Lipschitz functions on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>.</mo></mrow></semantics></math></inline-formula> However, alternative approaches to measuring distances between sequences of elements of metric spaces (essentially involved in the definition of <i>p</i>-summability) exist. One approach involves considering specific subsets of the unit ball of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>M</mi><mo>#</mo></msup></semantics></math></inline-formula> for computing the distances between sequences, such as the real Lipschitz functions derived from evaluating the difference in the values of the metric from two points to a fixed point. We introduce new notions of summability for Lipschitz operators involving such functions, which are characterized by integral dominations for those operators. To show the applicability of our results, in the last part of this paper, we use the theoretical tools obtained in the first part to analyze metric graphs. In particular, we show new results on the behavior of numerical indices defined on these graphs satisfying certain conditions of summability and symmetry.
format Article
id doaj-art-53a305d9ac6a4ad8b06ed482f151300b
institution Kabale University
issn 2075-1680
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-53a305d9ac6a4ad8b06ed482f151300b2024-11-26T17:50:49ZengMDPI AGAxioms2075-16802024-11-01131176010.3390/axioms13110760Eccentric <i>p</i>-Summing Lipschitz Operators and Integral Inequalities on Metric Spaces and GraphsRoger Arnau0Enrique A. Sánchez Pérez1Sergi Sanjuan2Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, SpainInstituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, SpainInstituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, SpainThe extension of the concept of <i>p</i>-summability for linear operators to the context of Lipschitz operators on metric spaces has been extensively studied in recent years. This research primarily uses the linearization of the metric space <i>M</i> afforded by the associated Arens–Eells space, along with the duality between <i>M</i> and the metric dual space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>M</mi><mo>#</mo></msup></semantics></math></inline-formula> defined by the real-valued Lipschitz functions on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>.</mo></mrow></semantics></math></inline-formula> However, alternative approaches to measuring distances between sequences of elements of metric spaces (essentially involved in the definition of <i>p</i>-summability) exist. One approach involves considering specific subsets of the unit ball of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>M</mi><mo>#</mo></msup></semantics></math></inline-formula> for computing the distances between sequences, such as the real Lipschitz functions derived from evaluating the difference in the values of the metric from two points to a fixed point. We introduce new notions of summability for Lipschitz operators involving such functions, which are characterized by integral dominations for those operators. To show the applicability of our results, in the last part of this paper, we use the theoretical tools obtained in the first part to analyze metric graphs. In particular, we show new results on the behavior of numerical indices defined on these graphs satisfying certain conditions of summability and symmetry.https://www.mdpi.com/2075-1680/13/11/760Lipschitzmetricsummabilityintegral inequalitiesdomination
spellingShingle Roger Arnau
Enrique A. Sánchez Pérez
Sergi Sanjuan
Eccentric <i>p</i>-Summing Lipschitz Operators and Integral Inequalities on Metric Spaces and Graphs
Axioms
Lipschitz
metric
summability
integral inequalities
domination
title Eccentric <i>p</i>-Summing Lipschitz Operators and Integral Inequalities on Metric Spaces and Graphs
title_full Eccentric <i>p</i>-Summing Lipschitz Operators and Integral Inequalities on Metric Spaces and Graphs
title_fullStr Eccentric <i>p</i>-Summing Lipschitz Operators and Integral Inequalities on Metric Spaces and Graphs
title_full_unstemmed Eccentric <i>p</i>-Summing Lipschitz Operators and Integral Inequalities on Metric Spaces and Graphs
title_short Eccentric <i>p</i>-Summing Lipschitz Operators and Integral Inequalities on Metric Spaces and Graphs
title_sort eccentric i p i summing lipschitz operators and integral inequalities on metric spaces and graphs
topic Lipschitz
metric
summability
integral inequalities
domination
url https://www.mdpi.com/2075-1680/13/11/760
work_keys_str_mv AT rogerarnau eccentricipisumminglipschitzoperatorsandintegralinequalitiesonmetricspacesandgraphs
AT enriqueasanchezperez eccentricipisumminglipschitzoperatorsandintegralinequalitiesonmetricspacesandgraphs
AT sergisanjuan eccentricipisumminglipschitzoperatorsandintegralinequalitiesonmetricspacesandgraphs