Scalable <i>O</i>(<i>log</i><sub>2</sub><i>n</i>) Dynamics Control for Soft Exoskeletons

Robotic exoskeletons are being actively applied to support the activities of daily living (ADL) for patients with hand motion impairments. In terms of actuation, soft materials and sensors have opened new alternatives to conventional rigid body structures. In this arena, biomimetic soft systems play...

Full description

Saved in:
Bibliographic Details
Main Authors: Julian D. Colorado, Diego Mendez, Andres Gomez-Bautista, John E. Bermeo, Catalina Alvarado-Rojas, Fredy Cuellar
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Actuators
Subjects:
Online Access:https://www.mdpi.com/2076-0825/13/11/450
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Robotic exoskeletons are being actively applied to support the activities of daily living (ADL) for patients with hand motion impairments. In terms of actuation, soft materials and sensors have opened new alternatives to conventional rigid body structures. In this arena, biomimetic soft systems play an important role in modeling and controlling human hand kinematics without the restrictions of rigid mechanical joints while having an entirely deformable body with limitless points of actuation. In this paper, we address the computational limitations of modeling large-scale articulated systems for soft robotic exoskeletons by integrating a parallel algorithm to compute the exoskeleton’s dynamics equations of motion (EoM), achieving a computation with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mi>l</mi><mi>o</mi><msub><mi>g</mi><mn>2</mn></msub><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula> complexity for the highly articulated <i>n</i> degrees of freedom (DoF) running on <i>p</i> processing cores. The proposed parallel algorithm achieves an exponential speedup for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mi>p</mi><mo>=</mo><mn>64</mn></mrow></semantics></math></inline-formula> DoF while achieving a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.96</mn></mrow></semantics></math></inline-formula> degree of parallelism for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mi>p</mi><mo>=</mo><mn>256</mn></mrow></semantics></math></inline-formula>, which demonstrates the required scalability for controlling highly articulated soft exoskeletons in real time. However, scalability will be bounded by the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mi>p</mi></mrow></semantics></math></inline-formula> fraction.
ISSN:2076-0825