Fabrication and characterization of CuO–SiO2/PVA polymer nanocomposite for effective wastewater treatment and prospective biological applications

The quality of water significantly affects the health and walefare of all orginisms, highlighting the importance to develop low-cost and efficient wastewater treatment methods. Herein, we report the fabrication, characterization, and utilization of a polymer-based ternary nanocomposite (CuO–SiO2/PVA...

Full description

Saved in:
Bibliographic Details
Main Authors: Muhammad Yaseen, Abbas Khan, Muhammad Humayun, Shaista Bibi, Saima Farooq, Mohamed Bououdina, Sajjad Ahmad
Format: Article
Language:English
Published: Taylor & Francis Group 2024-12-01
Series:Green Chemistry Letters and Reviews
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/17518253.2024.2321251
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The quality of water significantly affects the health and walefare of all orginisms, highlighting the importance to develop low-cost and efficient wastewater treatment methods. Herein, we report the fabrication, characterization, and utilization of a polymer-based ternary nanocomposite (CuO–SiO2/PVA) for the removal of Nile Blue (NB) and Methylene Blue (MB) contaminants from wastewater, along with exploring its potential biological activities. We have successfully employed the cost-effective sol–gel and in-situ polymerization approaches to fabricate the CuO–SiO2/PVA based ternary composite, utilizing Cu(NO3)2·3H2O:Glycerol:TEOS:PVA in a ratio of 8:2:3:4. The desired fabrication of nanocomposite was confirmed through UV-Visible spectroscopy, SEM (scanning electron microscope), TEM (transmission electron microscope), EDX (energy dispersive X-ray diffraction), FTIR (Fourier transform infrared), DSC (differential scanning calorimetry), and TGA (thermogravimetric analysis). In addition to its biological potentialthe performance of the nanocomposite in catalytic / photocatalytic removal of NB and MB dyes is investigated and compared. The higher photodegradation performance of the composite for NB (85%) dye than for MB (76%) dye indicates that variables such as chemical structure, charge, molecular mass, and pH sensitivity of the dyes can influence the catalyst's removal potential. This composite is considered to have a higher capability for removing pollutants and microorganisms from wastewater.
ISSN:1751-8253
1751-7192