Computer Vision and Transfer Learning for Grading of Egyptian Cotton Fibres

Egyptian cotton fibres have worldwide recognition due to their distinct quality and luxurious textile products known by the “Egyptian Cotton“ label. However, cotton fibre trading in Egypt still depends on human grading of cotton quality, which is resource-intensive and faces challenges in terms of s...

Full description

Saved in:
Bibliographic Details
Main Authors: Ahmed Rady, Oliver Fisher, Aly A. A. El-Banna, Haitham H. Emasih, Nicholas J. Watson
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:AgriEngineering
Subjects:
Online Access:https://www.mdpi.com/2624-7402/7/5/127
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Egyptian cotton fibres have worldwide recognition due to their distinct quality and luxurious textile products known by the “Egyptian Cotton“ label. However, cotton fibre trading in Egypt still depends on human grading of cotton quality, which is resource-intensive and faces challenges in terms of subjectivity and expertise requirements. This study investigates colour vision and transfer learning to classify the grade of five long (Giza 86, Giza 90, and Giza 94) and extra-long (Giza 87 and Giza 96) staple cotton cultivars. Five Convolutional Neural networks (CNNs)—AlexNet, GoogleNet, SqueezeNet, VGG16, and VGG19—were fine-tuned, optimised, and tested on independent datasets. The highest classifications were 75.7%, 85.0%, 80.0%, 77.1%, and 90.0% for Giza 86, Giza 87, Giza 90, Giza 94, and Giza 96, respectively, with F1-Scores ranging from 51.9–100%, 66.7–100%, 42.9–100%, 40.0–100%, and 80.0–100%. Among the CNNs, AlexNet, GoogleNet, and VGG19 outperformed the others. Fused CNN models further improved classification accuracy by up to 7.2% for all cultivars except Giza 87. These results demonstrate the feasibility of developing a fast, low-cost, and low-skilled vision system that overcomes the inconsistencies and limitations of manual grading in the early stages of cotton fibre trading in Egypt.
ISSN:2624-7402