Preoperative MRI-based deep learning reconstruction and classification model for assessing rectal cancer

Abstract Background To determine whether deep learning reconstruction (DLR) could improve the image quality of rectal MR images, and to explore the discrimination of the TN stage of rectal cancer by different readers and deep learning classification models, compared with conventional MR images witho...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuan Yuan, Shengnan Ren, Haidi Lu, Fangying Chen, Lei Xiang, Ryan Chamberlain, Chengwei Shao, Jianping Lu, Fu Shen, Luguang Chen
Format: Article
Language:English
Published: BMC 2025-07-01
Series:BMC Medical Imaging
Subjects:
Online Access:https://doi.org/10.1186/s12880-025-01775-1
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background To determine whether deep learning reconstruction (DLR) could improve the image quality of rectal MR images, and to explore the discrimination of the TN stage of rectal cancer by different readers and deep learning classification models, compared with conventional MR images without DLR. Methods Images of high-resolution T2-weighted, diffusion-weighted imaging (DWI), and contrast-enhanced T1-weighted imaging (CE-T1WI) from patients with pathologically diagnosed rectal cancer were retrospectively processed with and without DLR and assessed by five readers. The first two readers measured the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the lesions. The overall image quality and lesion display performance for each sequence with and without DLR were independently scored using a five-point scale, and the TN stage of rectal cancer lesions was evaluated by the other three readers. Fifty of the patients were randomly selected to further make a comparison between DLR and traditional denoising filter. Deep learning classification models were developed and compared for the TN stage. Receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) were used to evaluate the diagnostic performance of the proposed model. Results Overall, 178 patients were evaluated. The SNR and CNR of the lesion on images with DLR were significantly higher than those without DLR, for T2WI, DWI and CE-T1WI, respectively (p < 0.0001). A significant difference was observed in overall image quality and lesion display performance between images with and without DLR (p < 0.0001). The image quality scores, SNR, and CNR values of DLR image set were significantly larger than those of original and filter enhancement image sets (all p values < 0.05) for all the three sequences, respectively. The deep learning classification models with DLR achieved good discrimination of the TN stage, with area under the curve (AUC) values of 0.937 (95% CI 0.839–0.977) and 0.824 (95% CI 0.684–0.913) in the test sets, respectively. Conclusion Deep learning reconstruction and classification models could improve the image quality of rectal MRI images and enhance the diagnostic performance for determining the TN stage of patients with rectal cancer.
ISSN:1471-2342