Ni Nanoparticles Supported on Graphene-Based Materials as Highly Stable Catalysts for the Cathode of Alkaline Membrane Fuel Cells
Ni nanoparticles supported on graphene-based materials were tested as catalysts for the oxygen reduction reaction (ORR) to be used in anion exchange membrane fuel cells (AEMFCs). The introduction of N into the graphene structure produced an enhancement of electrocatalytic activity by improving elect...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-11-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/14/21/1768 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ni nanoparticles supported on graphene-based materials were tested as catalysts for the oxygen reduction reaction (ORR) to be used in anion exchange membrane fuel cells (AEMFCs). The introduction of N into the graphene structure produced an enhancement of electrocatalytic activity by improving electron transfer and creating additional active sites for the ORR. Materials containing both N and S demonstrated the highest stability, showing only a 3% performance loss after a 10 h stability test and therefore achieving the best overall performance. This long-term durability is attributed to the synergetic effect of Ni nanoparticles and bi-doped (S/N)-reduced graphene oxide. The findings suggest that the strategic incorporation of both nitrogen and sulphur into the graphene structure plays a crucial role in optimising the electrocatalytic properties of Ni-based catalysts. |
---|---|
ISSN: | 2079-4991 |