Structured volume-law entanglement in an interacting, monitored Majorana spin liquid
Monitored quantum circuits allow for unprecedented dynamical control of many-body entanglement. Here we show that random, measurement-only circuits, implementing the competition of bond and plaquette couplings of the Kitaev honeycomb model, give rise to a structured volume-law entangled phase with s...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
American Physical Society
2024-12-01
|
| Series: | Physical Review Research |
| Online Access: | http://doi.org/10.1103/PhysRevResearch.6.L042063 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Monitored quantum circuits allow for unprecedented dynamical control of many-body entanglement. Here we show that random, measurement-only circuits, implementing the competition of bond and plaquette couplings of the Kitaev honeycomb model, give rise to a structured volume-law entangled phase with subleading LlnL liquid scaling behavior. This interacting Majorana liquid takes up a highly symmetric, spherical parameter space within the entanglement phase diagram obtained when varying the relative coupling probabilities. The sphere itself is a critical boundary with quantum Lifshitz scaling separating the volume-law phase from proximate area-law phases, a color code or a toric code. An exception is a set of tricritical, self-dual points exhibiting effective (1+1)d conformal scaling at which the volume-law phase and both area-law phases meet. From a quantum information perspective, our results define error thresholds for the color code in the presence of projective error and stochastic syndrome measurements. |
|---|---|
| ISSN: | 2643-1564 |