Multimodal Image Translation Algorithm Based on Singular Squeeze-and-Excitation Network

Image-to-image translation methods have advanced from focusing on image-level info to incorporating pixel-level and instance-level details. However, with feature-level constraint, deviation occurs when the network overemphasizes convolutional features, neglecting traditional image feature extraction...

Full description

Saved in:
Bibliographic Details
Main Authors: Hangyao Tu, Zheng Wang, Yanwei Zhao
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/1/177
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Image-to-image translation methods have advanced from focusing on image-level info to incorporating pixel-level and instance-level details. However, with feature-level constraint, deviation occurs when the network overemphasizes convolutional features, neglecting traditional image feature extraction. To address this, we proposed the multimodal image translation algorithm MASSE based on a Singular Squeeze-and-Excitation Network, combining GANs and SENet. It utilizes SVD features to assist the SENet in managing the scaling degree. The SENet employs SVD to extract features and enhance the Excitation operation to obtain new channel attention weights and form attention feature maps. Then, image content features are refined by combining convolutional and attention feature maps, and style features are obtained by the style generator. Finally, content and style features are combined to generate new style images. Ablation experiments showed the optimal SVD parameter is 128, producing the best translation results. According to FID, MASSE outperforms current methods in generating diverse images.
ISSN:2227-7390