Coordination of Hydropower Generation and Export Considering River Flow Evolution Process of Cascade Hydropower Systems

Focusing the over simplification of existing models in simulating river flow evolution process and lack of coordination of hydropower generation and export, this paper proposes a hydropower generation and export coordinated optimal operation model that, at the same time, incorporates dynamic water f...

Full description

Saved in:
Bibliographic Details
Main Authors: Pai Li, Hui Lu, Lu Nan, Jiayi Liu
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/15/3917
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Focusing the over simplification of existing models in simulating river flow evolution process and lack of coordination of hydropower generation and export, this paper proposes a hydropower generation and export coordinated optimal operation model that, at the same time, incorporates dynamic water flow delay by finely modeling the water flow evolution process among cascade hydropower stations within a river basin. Specifically, firstly, a dynamic water flow evolution model is built based on the segmented Muskingum method. By dividing the river into sub-segments and establishing flow evolution equation for individual sub-segments, the model accurately captures the dynamic time delay of water flow. On this basis, integrating cascade hydropower systems and the transmission system, a hydropower generation and export coordinated optimal operation model is proposed. By flexibly adjusting the power export, the model balances local consumption and external transmission of hydropower, enhancing the utilization efficiency of hydropower resources and achieving high economic performance. A case study verified the accuracy of the dynamic water flow evolution model and the effectiveness of the proposed hydropower generation and export coordinated optimal operation model.
ISSN:1996-1073