Size winding mechanism beyond maximal chaos
Abstract The concept of information scrambling elucidates the dispersion of local information in quantum many-body systems, offering insights into various physical phenomena such as wormhole teleportation. This phenomenon has spurred extensive theoretical and experimental investigations. Among these...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
SpringerOpen
2024-11-01
|
| Series: | Journal of High Energy Physics |
| Subjects: | |
| Online Access: | https://doi.org/10.1007/JHEP11(2024)044 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract The concept of information scrambling elucidates the dispersion of local information in quantum many-body systems, offering insights into various physical phenomena such as wormhole teleportation. This phenomenon has spurred extensive theoretical and experimental investigations. Among these, the size-winding mechanism emerges as a valuable diagnostic tool for optimizing signal detection. In this work, we establish a computational framework for determining the winding size distribution in all-to-all interacting quantum systems, utilizing the scramblon effective theory. We obtain the winding size distribution for the large-q SYK model across the entire time domain, where potential late-time corrections can be crucial for finite-N systems. Notably, we unveil that the manifestation of size winding results from a universal phase factor in the scramblon propagator, highlighting the significance of the Lyapunov exponent. These findings contribute to a sharp and precise connection between operator dynamics and the phenomenon of wormhole teleportation. |
|---|---|
| ISSN: | 1029-8479 |