Non-Stationary Fractal Functions on the Sierpiński Gasket

Following the work on non-stationary fractal interpolation (<i>Mathematics</i> 7, 666 (2019)), we study non-stationary or statistically self-similar fractal interpolation on the Sierpiński gasket (SG). This article provides an upper bound of box dimension of the proposed interpolants in...

Full description

Saved in:
Bibliographic Details
Main Authors: Anuj Kumar, Salah Boulaaras, Shubham Kumar Verma, Mohamed Biomy
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/22/3463
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846153064308801536
author Anuj Kumar
Salah Boulaaras
Shubham Kumar Verma
Mohamed Biomy
author_facet Anuj Kumar
Salah Boulaaras
Shubham Kumar Verma
Mohamed Biomy
author_sort Anuj Kumar
collection DOAJ
description Following the work on non-stationary fractal interpolation (<i>Mathematics</i> 7, 666 (2019)), we study non-stationary or statistically self-similar fractal interpolation on the Sierpiński gasket (SG). This article provides an upper bound of box dimension of the proposed interpolants in certain spaces under suitable assumption on the corresponding Iterated Function System. Along the way, we also prove that the proposed non-stationary fractal interpolation functions have finite energy.
format Article
id doaj-art-4f995ba8a43b430c97e8597e621312b3
institution Kabale University
issn 2227-7390
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-4f995ba8a43b430c97e8597e621312b32024-11-26T18:11:30ZengMDPI AGMathematics2227-73902024-11-011222346310.3390/math12223463Non-Stationary Fractal Functions on the Sierpiński GasketAnuj Kumar0Salah Boulaaras1Shubham Kumar Verma2Mohamed Biomy3Department of Mathematics, Siddharth University Kapilvastu, Siddharthnagar 272202, IndiaDepartment of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi ArabiaCouncil of Finance and Mathematical Research, New Delhi 110016, IndiaDepartment of Management Information Systems, College of Business and Economics, Qassim University, Buraydah 51452, Saudi ArabiaFollowing the work on non-stationary fractal interpolation (<i>Mathematics</i> 7, 666 (2019)), we study non-stationary or statistically self-similar fractal interpolation on the Sierpiński gasket (SG). This article provides an upper bound of box dimension of the proposed interpolants in certain spaces under suitable assumption on the corresponding Iterated Function System. Along the way, we also prove that the proposed non-stationary fractal interpolation functions have finite energy.https://www.mdpi.com/2227-7390/12/22/3463Hausdorff dimensionself-SimilaritySierpiński gasketfractal functionHölder continuityfractional derivatives
spellingShingle Anuj Kumar
Salah Boulaaras
Shubham Kumar Verma
Mohamed Biomy
Non-Stationary Fractal Functions on the Sierpiński Gasket
Mathematics
Hausdorff dimension
self-Similarity
Sierpiński gasket
fractal function
Hölder continuity
fractional derivatives
title Non-Stationary Fractal Functions on the Sierpiński Gasket
title_full Non-Stationary Fractal Functions on the Sierpiński Gasket
title_fullStr Non-Stationary Fractal Functions on the Sierpiński Gasket
title_full_unstemmed Non-Stationary Fractal Functions on the Sierpiński Gasket
title_short Non-Stationary Fractal Functions on the Sierpiński Gasket
title_sort non stationary fractal functions on the sierpinski gasket
topic Hausdorff dimension
self-Similarity
Sierpiński gasket
fractal function
Hölder continuity
fractional derivatives
url https://www.mdpi.com/2227-7390/12/22/3463
work_keys_str_mv AT anujkumar nonstationaryfractalfunctionsonthesierpinskigasket
AT salahboulaaras nonstationaryfractalfunctionsonthesierpinskigasket
AT shubhamkumarverma nonstationaryfractalfunctionsonthesierpinskigasket
AT mohamedbiomy nonstationaryfractalfunctionsonthesierpinskigasket