Improved Crouzeix-Raviart scheme for the Stokes and Navier-Stokes problem

The resolution of the incompressible Navier-Stokes equations is tricky, and it is well known that one of the major issue is to approach the space: H1(Ω)∩ H(div 0; Ω) := {v ∈ H1(Ω) : div v = 0}. H 1 (Ω)∩ H ( div 0 ;Ω):= { v ∈ H 1 (Ω): div v = 0 }. $$ \mathbf{H}^1(\Omega) \cap \...

Full description

Saved in:
Bibliographic Details
Main Authors: Chénier Eric, Jamelot Erell, Le Potier Christophe, Peitavy Andrew
Format: Article
Language:English
Published: EDP Sciences 2024-01-01
Series:ESAIM: Proceedings and Surveys
Online Access:https://www.esaim-proc.org/articles/proc/pdf/2024/01/proc2407602.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846139329294893056
author Chénier Eric
Jamelot Erell
Le Potier Christophe
Peitavy Andrew
author_facet Chénier Eric
Jamelot Erell
Le Potier Christophe
Peitavy Andrew
author_sort Chénier Eric
collection DOAJ
description The resolution of the incompressible Navier-Stokes equations is tricky, and it is well known that one of the major issue is to approach the space: H1(Ω)∩ H(div 0; Ω) := {v ∈ H1(Ω) : div v = 0}. H 1 (Ω)∩ H ( div 0 ;Ω):= { v ∈ H 1 (Ω): div v = 0 }. $$ \mathbf{H}^1(\Omega) \cap \mathbf{H}(\operatorname{div} 0 ; \Omega):=\left\{\mathbf{v} \in \mathbf{H}^1(\Omega): \operatorname{div} \mathbf{v}=0\right\}. $$ The non-conforming Crouzeix-Raviart finite element are convenient since they induce local mass conservation. Moreover they are such that the stability constant of the Fortin operator is equal to 1. This implies that they can easily handle anisotropic mesh. However spurious velocities may appear and damage the approximation. We propose a scheme here that allows one to reduce the spurious velocities. It is based on a new discretisation for the gradient of pressure based on the symmetric MPFA scheme (finite volume MultiPoint Flux Approximation).
format Article
id doaj-art-4ec07f3c2f9e4c7094e6cb6d7a4b41e0
institution Kabale University
issn 2267-3059
language English
publishDate 2024-01-01
publisher EDP Sciences
record_format Article
series ESAIM: Proceedings and Surveys
spelling doaj-art-4ec07f3c2f9e4c7094e6cb6d7a4b41e02024-12-06T10:47:25ZengEDP SciencesESAIM: Proceedings and Surveys2267-30592024-01-0176203410.1051/proc/202476020proc2407602Improved Crouzeix-Raviart scheme for the Stokes and Navier-Stokes problemChénier Eric0Jamelot Erell1Le Potier Christophe2Peitavy Andrew3Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, UMR 8208, MSMEUniversité Paris-Saclay, CEA, Service de Thermo-hydraulique et de Mécanique des FluidesUniversité Paris-Saclay, CEA, Service de Thermo-hydraulique et de Mécanique des FluidesUniversité Paris-Saclay, CEA, Service de Thermo-hydraulique et de Mécanique des FluidesThe resolution of the incompressible Navier-Stokes equations is tricky, and it is well known that one of the major issue is to approach the space: H1(Ω)∩ H(div 0; Ω) := {v ∈ H1(Ω) : div v = 0}. H 1 (Ω)∩ H ( div 0 ;Ω):= { v ∈ H 1 (Ω): div v = 0 }. $$ \mathbf{H}^1(\Omega) \cap \mathbf{H}(\operatorname{div} 0 ; \Omega):=\left\{\mathbf{v} \in \mathbf{H}^1(\Omega): \operatorname{div} \mathbf{v}=0\right\}. $$ The non-conforming Crouzeix-Raviart finite element are convenient since they induce local mass conservation. Moreover they are such that the stability constant of the Fortin operator is equal to 1. This implies that they can easily handle anisotropic mesh. However spurious velocities may appear and damage the approximation. We propose a scheme here that allows one to reduce the spurious velocities. It is based on a new discretisation for the gradient of pressure based on the symmetric MPFA scheme (finite volume MultiPoint Flux Approximation).https://www.esaim-proc.org/articles/proc/pdf/2024/01/proc2407602.pdf
spellingShingle Chénier Eric
Jamelot Erell
Le Potier Christophe
Peitavy Andrew
Improved Crouzeix-Raviart scheme for the Stokes and Navier-Stokes problem
ESAIM: Proceedings and Surveys
title Improved Crouzeix-Raviart scheme for the Stokes and Navier-Stokes problem
title_full Improved Crouzeix-Raviart scheme for the Stokes and Navier-Stokes problem
title_fullStr Improved Crouzeix-Raviart scheme for the Stokes and Navier-Stokes problem
title_full_unstemmed Improved Crouzeix-Raviart scheme for the Stokes and Navier-Stokes problem
title_short Improved Crouzeix-Raviart scheme for the Stokes and Navier-Stokes problem
title_sort improved crouzeix raviart scheme for the stokes and navier stokes problem
url https://www.esaim-proc.org/articles/proc/pdf/2024/01/proc2407602.pdf
work_keys_str_mv AT cheniereric improvedcrouzeixraviartschemeforthestokesandnavierstokesproblem
AT jameloterell improvedcrouzeixraviartschemeforthestokesandnavierstokesproblem
AT lepotierchristophe improvedcrouzeixraviartschemeforthestokesandnavierstokesproblem
AT peitavyandrew improvedcrouzeixraviartschemeforthestokesandnavierstokesproblem