Modified COST-235 Empirical Pathloss Model for Agricultural WSN Using Particle Swarm Optimization

The increasing demand for agricultural products yearly encourages farmers to seek solutions to migrate from conventional farming to smart and precise farming by utilizing technological advances such as implementing wireless sensor networks (WSN). Unlike conventional farming, this technology is beli...

Full description

Saved in:
Bibliographic Details
Main Authors: Syahfrizal Tahcfulloh, Etty Wahyuni, Dwi Santoso, Rizkyandi Juliannanda
Format: Article
Language:English
Published: IIUM Press, International Islamic University Malaysia 2025-01-01
Series:International Islamic University Malaysia Engineering Journal
Subjects:
Online Access:https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/3446
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841549921300250624
author Syahfrizal Tahcfulloh
Etty Wahyuni
Dwi Santoso
Rizkyandi Juliannanda
author_facet Syahfrizal Tahcfulloh
Etty Wahyuni
Dwi Santoso
Rizkyandi Juliannanda
author_sort Syahfrizal Tahcfulloh
collection DOAJ
description The increasing demand for agricultural products yearly encourages farmers to seek solutions to migrate from conventional farming to smart and precise farming by utilizing technological advances such as implementing wireless sensor networks (WSN). Unlike conventional farming, this technology is believed to provide many advantages, including low cost, high efficiency, optimized land use, and high productivity results. However, this system is highly dependent on the availability of network interconnection where the bottleneck is the instability of signal strength and path loss, especially for radio wave propagation from the transmitter (Tx) in the form of sensors to the receiver (Rx) in the form of data processors where its performance depends on the distance, agricultural, environmental conditions, and surrounding vegetation. This paper explicitly examines and analyzes radio wave propagation modeling for measuring radio frequency (RF) signal strength in local agriculture's 2.4 GHz WSN system, such as Adan rice, corn, and peanuts. The particle-swarm-optimization (PSO) method is used to modify empirical path loss models such as Weissberger, ITU-vegetation, COST-235, Egli, and FITU-R, which also involve the influence of rain attenuation. Several other factors are also considered in the evaluation and analysis, i.e., the planting period of agricultural crops (seedlings, growth, and maturity), vegetation depth, and the height of the Tx-Rx antenna from the ground. The results of the experimental evaluation show that the PL COST-235 model continues to be optimized using the PSO method because it has the lowest RMSE both in conditions without and with rain attenuation, which are 23.30 and 9.33, respectively. Meanwhile, after the selected model is optimized using the PSO method, the RMSE for both conditions becomes 2.49 and 5.29.    ABSTRAK: Permintaan yang semakin meningkat terhadap produk pertanian setiap tahun mendorong para petani untuk mencari penyelesaian bagi beralih daripada pertanian konvensional kepada pertanian pintar dan tepat dengan memanfaatkan kemajuan teknologi seperti penggunaan rangkaian sensor tanpa wayar (WSN). Berbeza dengan pertanian konvensional, teknologi ini dipercayai memberikan banyak kelebihan, termasuk kos yang rendah, kecekapan yang tinggi, pengoptimuman penggunaan tanah, dan hasil produktiviti yang tinggi. Namun begitu, sistem ini sangat bergantung kepada ketersediaan rangkaian interkoneksi di mana kelemahan utamanya adalah ketidakstabilan kekuatan isyarat dan kehilangan laluan (path loss), terutamanya bagi penyebaran gelombang radio dari pemancar (Tx) berbentuk sensor ke penerima (Rx) berbentuk pemproses data, yang prestasinya bergantung kepada jarak, keadaan persekitaran pertanian, dan tumbuh-tumbuhan di sekeliling. Kajian ini secara khusus meneliti dan menganalisis pemodelan penyebaran gelombang radio untuk mengukur kekuatan isyarat frekuensi radio (RF) dalam sistem WSN 2.4 GHz di pertanian tempatan seperti padi Adan, jagung, dan kacang tanah. Kaedah pengoptimuman kawanan zarah (particle-swarm-optimization, PSO) digunakan untuk mengubah suai model kehilangan laluan empirikal seperti Weissberger, ITU-vegetation, COST-235, Egli, dan FITU-R, yang turut melibatkan pengaruh pelemahan hujan. Beberapa faktor lain juga dipertimbangkan dalam penilaian dan analisis ini, seperti tempoh penanaman tanaman pertanian (anak benih, pertumbuhan, dan kematangan), kedalaman tumbuh-tumbuhan, dan ketinggian antena Tx-Rx dari permukaan tanah. Hasil penilaian eksperimen menunjukkan bahawa model PL COST-235 terus dioptimumkan menggunakan kaedah PSO kerana ia mempunyai nilai RMSE paling rendah dalam kedua-dua keadaan tanpa dan dengan pelemahan hujan, iaitu masing-masing 23.30 dan 9.33. Sementara itu, selepas model yang dipilih dioptimumkan menggunakan kaedah PSO, nilai RMSE bagi kedua-dua keadaan menjadi 2.49 dan 5.29.
format Article
id doaj-art-4ebaacef24814dd6bcabebe1178ecd3d
institution Kabale University
issn 1511-788X
2289-7860
language English
publishDate 2025-01-01
publisher IIUM Press, International Islamic University Malaysia
record_format Article
series International Islamic University Malaysia Engineering Journal
spelling doaj-art-4ebaacef24814dd6bcabebe1178ecd3d2025-01-10T12:40:37ZengIIUM Press, International Islamic University MalaysiaInternational Islamic University Malaysia Engineering Journal1511-788X2289-78602025-01-0126110.31436/iiumej.v26i1.3446Modified COST-235 Empirical Pathloss Model for Agricultural WSN Using Particle Swarm OptimizationSyahfrizal Tahcfulloh0https://orcid.org/0000-0001-5713-1667Etty Wahyuni1Dwi Santoso2https://orcid.org/0009-0009-2357-5433Rizkyandi Juliannanda3Universitas Borneo TarakanUniversitas Borneo TarakanUniversitas Borneo Tarakan Universitas Borneo Tarakan The increasing demand for agricultural products yearly encourages farmers to seek solutions to migrate from conventional farming to smart and precise farming by utilizing technological advances such as implementing wireless sensor networks (WSN). Unlike conventional farming, this technology is believed to provide many advantages, including low cost, high efficiency, optimized land use, and high productivity results. However, this system is highly dependent on the availability of network interconnection where the bottleneck is the instability of signal strength and path loss, especially for radio wave propagation from the transmitter (Tx) in the form of sensors to the receiver (Rx) in the form of data processors where its performance depends on the distance, agricultural, environmental conditions, and surrounding vegetation. This paper explicitly examines and analyzes radio wave propagation modeling for measuring radio frequency (RF) signal strength in local agriculture's 2.4 GHz WSN system, such as Adan rice, corn, and peanuts. The particle-swarm-optimization (PSO) method is used to modify empirical path loss models such as Weissberger, ITU-vegetation, COST-235, Egli, and FITU-R, which also involve the influence of rain attenuation. Several other factors are also considered in the evaluation and analysis, i.e., the planting period of agricultural crops (seedlings, growth, and maturity), vegetation depth, and the height of the Tx-Rx antenna from the ground. The results of the experimental evaluation show that the PL COST-235 model continues to be optimized using the PSO method because it has the lowest RMSE both in conditions without and with rain attenuation, which are 23.30 and 9.33, respectively. Meanwhile, after the selected model is optimized using the PSO method, the RMSE for both conditions becomes 2.49 and 5.29.    ABSTRAK: Permintaan yang semakin meningkat terhadap produk pertanian setiap tahun mendorong para petani untuk mencari penyelesaian bagi beralih daripada pertanian konvensional kepada pertanian pintar dan tepat dengan memanfaatkan kemajuan teknologi seperti penggunaan rangkaian sensor tanpa wayar (WSN). Berbeza dengan pertanian konvensional, teknologi ini dipercayai memberikan banyak kelebihan, termasuk kos yang rendah, kecekapan yang tinggi, pengoptimuman penggunaan tanah, dan hasil produktiviti yang tinggi. Namun begitu, sistem ini sangat bergantung kepada ketersediaan rangkaian interkoneksi di mana kelemahan utamanya adalah ketidakstabilan kekuatan isyarat dan kehilangan laluan (path loss), terutamanya bagi penyebaran gelombang radio dari pemancar (Tx) berbentuk sensor ke penerima (Rx) berbentuk pemproses data, yang prestasinya bergantung kepada jarak, keadaan persekitaran pertanian, dan tumbuh-tumbuhan di sekeliling. Kajian ini secara khusus meneliti dan menganalisis pemodelan penyebaran gelombang radio untuk mengukur kekuatan isyarat frekuensi radio (RF) dalam sistem WSN 2.4 GHz di pertanian tempatan seperti padi Adan, jagung, dan kacang tanah. Kaedah pengoptimuman kawanan zarah (particle-swarm-optimization, PSO) digunakan untuk mengubah suai model kehilangan laluan empirikal seperti Weissberger, ITU-vegetation, COST-235, Egli, dan FITU-R, yang turut melibatkan pengaruh pelemahan hujan. Beberapa faktor lain juga dipertimbangkan dalam penilaian dan analisis ini, seperti tempoh penanaman tanaman pertanian (anak benih, pertumbuhan, dan kematangan), kedalaman tumbuh-tumbuhan, dan ketinggian antena Tx-Rx dari permukaan tanah. Hasil penilaian eksperimen menunjukkan bahawa model PL COST-235 terus dioptimumkan menggunakan kaedah PSO kerana ia mempunyai nilai RMSE paling rendah dalam kedua-dua keadaan tanpa dan dengan pelemahan hujan, iaitu masing-masing 23.30 dan 9.33. Sementara itu, selepas model yang dipilih dioptimumkan menggunakan kaedah PSO, nilai RMSE bagi kedua-dua keadaan menjadi 2.49 dan 5.29. https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/3446Agriculture-WSNFITU-RPathlossParticle-Swarm-OptimizationRoot-Mean-Square-Error
spellingShingle Syahfrizal Tahcfulloh
Etty Wahyuni
Dwi Santoso
Rizkyandi Juliannanda
Modified COST-235 Empirical Pathloss Model for Agricultural WSN Using Particle Swarm Optimization
International Islamic University Malaysia Engineering Journal
Agriculture-WSN
FITU-R
Pathloss
Particle-Swarm-Optimization
Root-Mean-Square-Error
title Modified COST-235 Empirical Pathloss Model for Agricultural WSN Using Particle Swarm Optimization
title_full Modified COST-235 Empirical Pathloss Model for Agricultural WSN Using Particle Swarm Optimization
title_fullStr Modified COST-235 Empirical Pathloss Model for Agricultural WSN Using Particle Swarm Optimization
title_full_unstemmed Modified COST-235 Empirical Pathloss Model for Agricultural WSN Using Particle Swarm Optimization
title_short Modified COST-235 Empirical Pathloss Model for Agricultural WSN Using Particle Swarm Optimization
title_sort modified cost 235 empirical pathloss model for agricultural wsn using particle swarm optimization
topic Agriculture-WSN
FITU-R
Pathloss
Particle-Swarm-Optimization
Root-Mean-Square-Error
url https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/3446
work_keys_str_mv AT syahfrizaltahcfulloh modifiedcost235empiricalpathlossmodelforagriculturalwsnusingparticleswarmoptimization
AT ettywahyuni modifiedcost235empiricalpathlossmodelforagriculturalwsnusingparticleswarmoptimization
AT dwisantoso modifiedcost235empiricalpathlossmodelforagriculturalwsnusingparticleswarmoptimization
AT rizkyandijuliannanda modifiedcost235empiricalpathlossmodelforagriculturalwsnusingparticleswarmoptimization