Temperature Prediction at Street Scale During a Heat Wave Using Random Forest

The rising frequency of heatwaves, combined with the urban heat island effect, increases the population’s exposure to high temperatures, significantly impacting the health of vulnerable groups and the overall well-being of residents. While mesoscale meteorological models can reliably forecast temper...

Full description

Saved in:
Bibliographic Details
Main Authors: Panagiotis Gkirmpas, George Tsegas, Denise Boehnke, Christos Vlachokostas, Nicolas Moussiopoulos
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/16/7/877
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rising frequency of heatwaves, combined with the urban heat island effect, increases the population’s exposure to high temperatures, significantly impacting the health of vulnerable groups and the overall well-being of residents. While mesoscale meteorological models can reliably forecast temperatures across urban neighbourhoods, dense networks of in situ measurements offer more precise data at the street scale. In this work, the Random Forest technique was used to predict street-scale temperatures in the downtown area of Thessaloniki, Greece, during a prolonged heatwave in July 2021. The model was trained using data from a low-cost sensor network, meteorological fields calculated by the mesoscale model MEMO, and micro-environmental spatial features. The results show that, although the MEMO temperature predictions achieve high accuracy during nighttime compared to measurements, they exhibit inconsistent trends across sensor locations during daytime, indicating that the model does not fully account for microclimatic phenomena. Additionally, by using only the observed temperature as the target of the Random Forest model, higher accuracy is achieved, but spatial features are not represented in the predictions. In contrast, the most reliable approach to incorporating spatial characteristics is to use the difference between observed and mesoscale temperatures as the target variable.
ISSN:2073-4433