Dissipation rates from experimental uncertainty

Active matter and driven systems exhibit statistical fluctuations in density and particle positions that are an indirect indicator of dissipation across length and time scales. Here, we quantitatively relate these fluctuations to a thermodynamic speed limit that constrains the rates of heat and entr...

Full description

Saved in:
Bibliographic Details
Main Authors: Aishani Ghosal, Jason R. Green
Format: Article
Language:English
Published: American Physical Society 2025-03-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.7.L012078
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Active matter and driven systems exhibit statistical fluctuations in density and particle positions that are an indirect indicator of dissipation across length and time scales. Here, we quantitatively relate these fluctuations to a thermodynamic speed limit that constrains the rates of heat and entropy production in nonequilibrium processes. By reparametrizing the speed limit set by the Fisher information, we show how to infer these dissipation rates from directly observable or controllable quantities. This approach can use available experimental data as input and avoid the need for analytically solvable microscopic models or full time-dependent probability distributions. The heat rate we predict agrees with experimental measurements for a pulled Brownian particle and a microtubule active gel, which validates the approach and suggests potential for the design of experiments.
ISSN:2643-1564