Testing ion exchange resin for quantifying bulk and throughfall deposition of macro- and micro-elements in forests

<p>Atmospheric deposition is a major nutrient influx in ecosystems, while high anthropogenic deposition may disrupt ecosystem functioning. Quantification of the deposition flux is required to understand the impact of such anthropogenic pollution. However, current methods to measure nutrient de...

Full description

Saved in:
Bibliographic Details
Main Authors: M. A. E. Vos, W. de Vries, G. F. (. Veen, M. R. Hoosbeek, F. J. Sterck
Format: Article
Language:English
Published: Copernicus Publications 2024-11-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/17/6579/2024/amt-17-6579-2024.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846164463223308288
author M. A. E. Vos
W. de Vries
G. F. (. Veen
M. R. Hoosbeek
F. J. Sterck
author_facet M. A. E. Vos
W. de Vries
G. F. (. Veen
M. R. Hoosbeek
F. J. Sterck
author_sort M. A. E. Vos
collection DOAJ
description <p>Atmospheric deposition is a major nutrient influx in ecosystems, while high anthropogenic deposition may disrupt ecosystem functioning. Quantification of the deposition flux is required to understand the impact of such anthropogenic pollution. However, current methods to measure nutrient deposition are costly, labor-intensive and potentially inaccurate.</p> <p>Ion exchange resin (IER) appears to be a promising cost- and labor-effective method. The IER method is potentially suited for deposition measurements on coarse timescales and for areas with little rainfall and/or low elemental concentrations. The accuracy of the IER method is, however, hardly classified beyond nitrogen. We tested the IER method for bulk deposition and throughfall measurements of macro- and micro-elements, assessing resin adsorption capacity, recovery efficiency and field behavior.</p> <p>We show that IER is able to adsorb 100 % of Ca, Cu, Fe, K, Mg, Mn, P, S, Zn and NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="5c4cefaf8b78d41c1ce2f2ef151f712f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-17-6579-2024-ie00001.svg" width="9pt" height="16pt" src="amt-17-6579-2024-ie00001.png"/></svg:svg></span></span> and <span class="inline-formula">&gt;</span> 96 % of P and Na. Loading the resin beyond its capacity resulted mainly in losses of Na, P and NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="43bba5feeea5818072376b211f2a452d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-17-6579-2024-ie00002.svg" width="8pt" height="15pt" src="amt-17-6579-2024-ie00002.png"/></svg:svg></span></span>, while losses of Ca, Cu, Fe, Mg, Mn and Zn were hardly detected. Heat (40 °C), drought and frost (<span class="inline-formula">−15</span> °C) reduced the adsorption of P by 25 %. Recovery was close to 100 % for NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="aa378b71f34a6c23384fc0eb7c6e7621"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-17-6579-2024-ie00003.svg" width="8pt" height="15pt" src="amt-17-6579-2024-ie00003.png"/></svg:svg></span></span> and NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a6a4c5911a740e8377438efb607d4b86"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-17-6579-2024-ie00004.svg" width="9pt" height="16pt" src="amt-17-6579-2024-ie00004.png"/></svg:svg></span></span> using KCl solution (1 or 2 M), while high (83 %–93 %) recoveries of Ca, Cu, Fe, K, Mg, Mn and S were found using HCl as an extractant (2–4 M). We found good agreement between the conventional method and the IER method for field conditions.</p> <p>Overall, IER is a powerful tool for the measurement of atmospheric deposition of a broad range of elements as the measurements showed high accuracy. The IER method therefore has the potential to expand current monitoring networks and increase the number of sampling sites.</p>
format Article
id doaj-art-4a4f57c59a4c4c8b8c5d6f9fd1f1abf1
institution Kabale University
issn 1867-1381
1867-8548
language English
publishDate 2024-11-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj-art-4a4f57c59a4c4c8b8c5d6f9fd1f1abf12024-11-18T05:48:10ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482024-11-01176579659410.5194/amt-17-6579-2024Testing ion exchange resin for quantifying bulk and throughfall deposition of macro- and micro-elements in forestsM. A. E. Vos0W. de Vries1G. F. (. Veen2M. R. Hoosbeek3F. J. Sterck4Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen 6700 AA, the NetherlandsEarth Systems and Global Change Group, Wageningen University and Research, Wageningen 6700 AA, the NetherlandsDepartment of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, the NetherlandsSoil Chemistry Group, Wageningen University and Research, Wageningen 6700 AA, the NetherlandsForest Ecology and Forest Management Group, Wageningen University and Research, Wageningen 6700 AA, the Netherlands<p>Atmospheric deposition is a major nutrient influx in ecosystems, while high anthropogenic deposition may disrupt ecosystem functioning. Quantification of the deposition flux is required to understand the impact of such anthropogenic pollution. However, current methods to measure nutrient deposition are costly, labor-intensive and potentially inaccurate.</p> <p>Ion exchange resin (IER) appears to be a promising cost- and labor-effective method. The IER method is potentially suited for deposition measurements on coarse timescales and for areas with little rainfall and/or low elemental concentrations. The accuracy of the IER method is, however, hardly classified beyond nitrogen. We tested the IER method for bulk deposition and throughfall measurements of macro- and micro-elements, assessing resin adsorption capacity, recovery efficiency and field behavior.</p> <p>We show that IER is able to adsorb 100 % of Ca, Cu, Fe, K, Mg, Mn, P, S, Zn and NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="5c4cefaf8b78d41c1ce2f2ef151f712f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-17-6579-2024-ie00001.svg" width="9pt" height="16pt" src="amt-17-6579-2024-ie00001.png"/></svg:svg></span></span> and <span class="inline-formula">&gt;</span> 96 % of P and Na. Loading the resin beyond its capacity resulted mainly in losses of Na, P and NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="43bba5feeea5818072376b211f2a452d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-17-6579-2024-ie00002.svg" width="8pt" height="15pt" src="amt-17-6579-2024-ie00002.png"/></svg:svg></span></span>, while losses of Ca, Cu, Fe, Mg, Mn and Zn were hardly detected. Heat (40 °C), drought and frost (<span class="inline-formula">−15</span> °C) reduced the adsorption of P by 25 %. Recovery was close to 100 % for NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="aa378b71f34a6c23384fc0eb7c6e7621"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-17-6579-2024-ie00003.svg" width="8pt" height="15pt" src="amt-17-6579-2024-ie00003.png"/></svg:svg></span></span> and NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a6a4c5911a740e8377438efb607d4b86"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-17-6579-2024-ie00004.svg" width="9pt" height="16pt" src="amt-17-6579-2024-ie00004.png"/></svg:svg></span></span> using KCl solution (1 or 2 M), while high (83 %–93 %) recoveries of Ca, Cu, Fe, K, Mg, Mn and S were found using HCl as an extractant (2–4 M). We found good agreement between the conventional method and the IER method for field conditions.</p> <p>Overall, IER is a powerful tool for the measurement of atmospheric deposition of a broad range of elements as the measurements showed high accuracy. The IER method therefore has the potential to expand current monitoring networks and increase the number of sampling sites.</p>https://amt.copernicus.org/articles/17/6579/2024/amt-17-6579-2024.pdf
spellingShingle M. A. E. Vos
W. de Vries
G. F. (. Veen
M. R. Hoosbeek
F. J. Sterck
Testing ion exchange resin for quantifying bulk and throughfall deposition of macro- and micro-elements in forests
Atmospheric Measurement Techniques
title Testing ion exchange resin for quantifying bulk and throughfall deposition of macro- and micro-elements in forests
title_full Testing ion exchange resin for quantifying bulk and throughfall deposition of macro- and micro-elements in forests
title_fullStr Testing ion exchange resin for quantifying bulk and throughfall deposition of macro- and micro-elements in forests
title_full_unstemmed Testing ion exchange resin for quantifying bulk and throughfall deposition of macro- and micro-elements in forests
title_short Testing ion exchange resin for quantifying bulk and throughfall deposition of macro- and micro-elements in forests
title_sort testing ion exchange resin for quantifying bulk and throughfall deposition of macro and micro elements in forests
url https://amt.copernicus.org/articles/17/6579/2024/amt-17-6579-2024.pdf
work_keys_str_mv AT maevos testingionexchangeresinforquantifyingbulkandthroughfalldepositionofmacroandmicroelementsinforests
AT wdevries testingionexchangeresinforquantifyingbulkandthroughfalldepositionofmacroandmicroelementsinforests
AT gfveen testingionexchangeresinforquantifyingbulkandthroughfalldepositionofmacroandmicroelementsinforests
AT mrhoosbeek testingionexchangeresinforquantifyingbulkandthroughfalldepositionofmacroandmicroelementsinforests
AT fjsterck testingionexchangeresinforquantifyingbulkandthroughfalldepositionofmacroandmicroelementsinforests