Global bifurcation of positive solutions for a superlinear $p$-Laplacian system

We are concerned with the principal eigenvalue of \begin{equation*} \begin{cases} -\Delta_p u= \lambda\theta_1\varphi_p(v), &x\in \Omega,\\ -\Delta_p v= \lambda\theta_2\varphi_p(u), &x\in \Omega,\\ u=0=v,\ &x\in\partial\Omega \end{cases} \tag{P} \end{equation*...

Full description

Saved in:
Bibliographic Details
Main Authors: Lijuan Yang, Ruyun Ma
Format: Article
Language:English
Published: University of Szeged 2024-08-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10984
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841533480229404672
author Lijuan Yang
Ruyun Ma
author_facet Lijuan Yang
Ruyun Ma
author_sort Lijuan Yang
collection DOAJ
description We are concerned with the principal eigenvalue of \begin{equation*} \begin{cases} -\Delta_p u= \lambda\theta_1\varphi_p(v), &x\in \Omega,\\ -\Delta_p v= \lambda\theta_2\varphi_p(u), &x\in \Omega,\\ u=0=v,\ &x\in\partial\Omega \end{cases} \tag{P} \end{equation*} and the global structure of positive solutions for the system \begin{equation*} \begin{cases} -\Delta_p u= \lambda f(v), &x\in \Omega,\\ -\Delta_p v= \lambda g(u), &x\in \Omega,\\ u=0=v,\ &x\in\partial\Omega, \end{cases} \tag{Q} \end{equation*} where $\varphi_p(s)=|s|^{p-2}s$, $\Delta_p s=\text{div}(|\nabla s|^{p-2}\nabla s)$, $\lambda>0$ is a parameter, $\Omega\subset\mathbb{R}^N$, $N> 2$, is a bounded domain with smooth boundary $\partial\Omega$, $f,g:\mathbb{R}\to(0,\infty)$ are continuous functions with $p$-superlinear growth at infinity. We obtain the principal eigenvalue of $(P)$ by using a nonlinear Krein–Rutman theorem and the unbounded branch of positive solutions for $(Q)$ via bifurcation technology.
format Article
id doaj-art-49e86df053dd4901942323972733d66f
institution Kabale University
issn 1417-3875
language English
publishDate 2024-08-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj-art-49e86df053dd4901942323972733d66f2025-01-15T21:24:58ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752024-08-0120244511910.14232/ejqtde.2024.1.4510984Global bifurcation of positive solutions for a superlinear $p$-Laplacian systemLijuan Yang0Ruyun MaNorthwest Normal University, Lanzhou, P. R. ChinaWe are concerned with the principal eigenvalue of \begin{equation*} \begin{cases} -\Delta_p u= \lambda\theta_1\varphi_p(v), &x\in \Omega,\\ -\Delta_p v= \lambda\theta_2\varphi_p(u), &x\in \Omega,\\ u=0=v,\ &x\in\partial\Omega \end{cases} \tag{P} \end{equation*} and the global structure of positive solutions for the system \begin{equation*} \begin{cases} -\Delta_p u= \lambda f(v), &x\in \Omega,\\ -\Delta_p v= \lambda g(u), &x\in \Omega,\\ u=0=v,\ &x\in\partial\Omega, \end{cases} \tag{Q} \end{equation*} where $\varphi_p(s)=|s|^{p-2}s$, $\Delta_p s=\text{div}(|\nabla s|^{p-2}\nabla s)$, $\lambda>0$ is a parameter, $\Omega\subset\mathbb{R}^N$, $N> 2$, is a bounded domain with smooth boundary $\partial\Omega$, $f,g:\mathbb{R}\to(0,\infty)$ are continuous functions with $p$-superlinear growth at infinity. We obtain the principal eigenvalue of $(P)$ by using a nonlinear Krein–Rutman theorem and the unbounded branch of positive solutions for $(Q)$ via bifurcation technology.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10984$p$-laplacianprincipal eigenvaluepositive solutionsbifurcation
spellingShingle Lijuan Yang
Ruyun Ma
Global bifurcation of positive solutions for a superlinear $p$-Laplacian system
Electronic Journal of Qualitative Theory of Differential Equations
$p$-laplacian
principal eigenvalue
positive solutions
bifurcation
title Global bifurcation of positive solutions for a superlinear $p$-Laplacian system
title_full Global bifurcation of positive solutions for a superlinear $p$-Laplacian system
title_fullStr Global bifurcation of positive solutions for a superlinear $p$-Laplacian system
title_full_unstemmed Global bifurcation of positive solutions for a superlinear $p$-Laplacian system
title_short Global bifurcation of positive solutions for a superlinear $p$-Laplacian system
title_sort global bifurcation of positive solutions for a superlinear p laplacian system
topic $p$-laplacian
principal eigenvalue
positive solutions
bifurcation
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10984
work_keys_str_mv AT lijuanyang globalbifurcationofpositivesolutionsforasuperlinearplaplaciansystem
AT ruyunma globalbifurcationofpositivesolutionsforasuperlinearplaplaciansystem