Social network bursty topic discovery based on RNN and topic model

The data is noisy and diverse,with a large number of meaningless topics in social network.The traditional method of bursty topic discovery cannot solve the sparseness problem in social network,and require complicated post-processing.In order to tackle this problem,a bursty topic discovery method bas...

Full description

Saved in:
Bibliographic Details
Main Authors: Lei SHI, Junping DU, Meiyu LIANG
Format: Article
Language:zho
Published: Editorial Department of Journal on Communications 2018-04-01
Series:Tongxin xuebao
Subjects:
Online Access:http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2018056/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The data is noisy and diverse,with a large number of meaningless topics in social network.The traditional method of bursty topic discovery cannot solve the sparseness problem in social network,and require complicated post-processing.In order to tackle this problem,a bursty topic discovery method based on recurrent neural network and topic model was proposed.Firstly,the weight prior based on RNN and IDF were constructed to learn the relationship between words.At the same time,the word pairs were constructed to solve the sparseness problem.Secondly,the “spike and slab” prior was introduced to decouple the sparsity and smoothness of the bursty topic distribution.Finally,the burstiness of words were leveraged to model the bursty topic and the common topic,and automatically discover the bursty topics.To evaluate the effectiveness of proposed method,the various experiments were conducted.Both qualitative and quantitative evaluations demonstrate that the proposed RTM-SBTD method outperforms favorably against several state-of-the-art methods.
ISSN:1000-436X