Design of a lightweight broadband vibration reduction structure with embedded acoustic black holes in viscoelastic damping materials

Viscoelastic damping materials (VDMs) are valued for their high damping characteristics in vibration and noise control. However, they typically underperform at lower frequencies and add substantial mass to structures. This study introduces an innovative approach by embedding an acoustic black hole (...

Full description

Saved in:
Bibliographic Details
Main Authors: Liang Xu, Jie Zhang, Jiang Li, Huaan Tian, Chaofan Zheng, Shaoyun Guo
Format: Article
Language:English
Published: Elsevier 2024-12-01
Series:Materials & Design
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0264127524008256
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Viscoelastic damping materials (VDMs) are valued for their high damping characteristics in vibration and noise control. However, they typically underperform at lower frequencies and add substantial mass to structures. This study introduces an innovative approach by embedding an acoustic black hole (ABH) structure within VDMs (ABH-VDM) to achieve lightweight and broadband vibration damping. Firstly, a finite element method-based vibration model is developed to analyse the propagation and attenuation characteristics of vibrations in a plate strip embedded with ABH-VDM. This analysis provides insights into the dynamic behaviour and damping effectiveness of the proposed structure. Secondly, the study investigates the vibration reduction capabilities and mass implications of ABH-VDM on large-scale plate structures. The influence of ABH structural parameters, including the power exponent, cut-off thickness, and array configuration, is systematically investigated to optimize damping performance. Finally, experimental validation confirms that ABH-VDM achieves an additional 1.4 dB reduction in vibration across the entire frequency spectrum, with a bandwidth extension of 900 Hz. Moreover, ABH-VDM reduces mass by 8.6 %, demonstrating its potential for lightweight vibration control in structural applications. This research contributes valuable insights into advancing lightweight and broadband damping solutions for enhanced vibration management in engineering systems.
ISSN:0264-1275