Deep learning on CT scans to predict checkpoint inhibitor treatment outcomes in advanced melanoma

Abstract Immune checkpoint inhibitor (ICI) treatment has proven successful for advanced melanoma, but is associated with potentially severe toxicity and high costs. Accurate biomarkers for response are lacking. The present work is the first to investigate the value of deep learning on CT imaging of...

Full description

Saved in:
Bibliographic Details
Main Authors: Laurens S. Ter Maat, Rob A. J. De Mooij, Isabella A. J. Van Duin, Joost J. C. Verhoeff, Sjoerd G. Elias, Tim Leiner, Wouter A. C. van Amsterdam, Max F. Troenokarso, Eran R. A. N. Arntz, Franchette W. P. J. Van den Berkmortel, Marye J. Boers-Sonderen, Martijn F. Boomsma, Fons J. M. Van den Eertwegh, Jan Willem de Groot, Geke A. P. Hospers, Djura Piersma, Art Vreugdenhil, Hans M. Westgeest, Ellen Kapiteijn, Ardine A. De Wit, Willeke A. M. Blokx, Paul J. Van Diest, Pim A. De Jong, Josien P. W. Pluim, Karijn P. M. Suijkerbuijk, Mitko Veta
Format: Article
Language:English
Published: Nature Portfolio 2024-12-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-024-81188-2
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841559425338310656
author Laurens S. Ter Maat
Rob A. J. De Mooij
Isabella A. J. Van Duin
Joost J. C. Verhoeff
Sjoerd G. Elias
Tim Leiner
Wouter A. C. van Amsterdam
Max F. Troenokarso
Eran R. A. N. Arntz
Franchette W. P. J. Van den Berkmortel
Marye J. Boers-Sonderen
Martijn F. Boomsma
Fons J. M. Van den Eertwegh
Jan Willem de Groot
Geke A. P. Hospers
Djura Piersma
Art Vreugdenhil
Hans M. Westgeest
Ellen Kapiteijn
Ardine A. De Wit
Willeke A. M. Blokx
Paul J. Van Diest
Pim A. De Jong
Josien P. W. Pluim
Karijn P. M. Suijkerbuijk
Mitko Veta
author_facet Laurens S. Ter Maat
Rob A. J. De Mooij
Isabella A. J. Van Duin
Joost J. C. Verhoeff
Sjoerd G. Elias
Tim Leiner
Wouter A. C. van Amsterdam
Max F. Troenokarso
Eran R. A. N. Arntz
Franchette W. P. J. Van den Berkmortel
Marye J. Boers-Sonderen
Martijn F. Boomsma
Fons J. M. Van den Eertwegh
Jan Willem de Groot
Geke A. P. Hospers
Djura Piersma
Art Vreugdenhil
Hans M. Westgeest
Ellen Kapiteijn
Ardine A. De Wit
Willeke A. M. Blokx
Paul J. Van Diest
Pim A. De Jong
Josien P. W. Pluim
Karijn P. M. Suijkerbuijk
Mitko Veta
author_sort Laurens S. Ter Maat
collection DOAJ
description Abstract Immune checkpoint inhibitor (ICI) treatment has proven successful for advanced melanoma, but is associated with potentially severe toxicity and high costs. Accurate biomarkers for response are lacking. The present work is the first to investigate the value of deep learning on CT imaging of metastatic lesions for predicting ICI treatment outcomes in advanced melanoma. Adult patients that were treated with ICI for advanced melanoma were retrospectively identified from ten participating centers. A deep learning model (DLM) was trained on volumes of lesions on baseline CT to predict clinical benefit. The DLM was compared to and combined with a model of known clinical predictors (presence of liver and brain metastasis, level of lactate dehydrogenase, performance status and number of affected organs). A total of 730 eligible patients with 2722 lesions were included. The DLM reached an area under the receiver operating characteristic (AUROC) of 0.607 [95%CI 0.565–0.648]. In comparison, a model of clinical predictors reached an AUROC of 0.635 [95%CI 0.59 –0.678]. The combination model reached an AUROC of 0.635 [95% CI 0.595–0.676]. Differences in AUROC were not statistically significant. The output of the DLM was significantly correlated with four of the five input variables of the clinical model. The DLM reached a statistically significant discriminative value, but was unable to improve over known clinical predictors. The present work shows that the assessment over known clinical predictors is an essential step for imaging-based prediction and brings important nuance to the almost exclusively positive findings in this field.
format Article
id doaj-art-495322e408e349a3aff5ac747651cd04
institution Kabale University
issn 2045-2322
language English
publishDate 2024-12-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj-art-495322e408e349a3aff5ac747651cd042025-01-05T12:29:28ZengNature PortfolioScientific Reports2045-23222024-12-0114111110.1038/s41598-024-81188-2Deep learning on CT scans to predict checkpoint inhibitor treatment outcomes in advanced melanomaLaurens S. Ter Maat0Rob A. J. De Mooij1Isabella A. J. Van Duin2Joost J. C. Verhoeff3Sjoerd G. Elias4Tim Leiner5Wouter A. C. van Amsterdam6Max F. Troenokarso7Eran R. A. N. Arntz8Franchette W. P. J. Van den Berkmortel9Marye J. Boers-Sonderen10Martijn F. Boomsma11Fons J. M. Van den Eertwegh12Jan Willem de Groot13Geke A. P. Hospers14Djura Piersma15Art Vreugdenhil16Hans M. Westgeest17Ellen Kapiteijn18Ardine A. De Wit19Willeke A. M. Blokx20Paul J. Van Diest21Pim A. De Jong22Josien P. W. Pluim23Karijn P. M. Suijkerbuijk24Mitko Veta25Image Sciences Institute, University Medical Center Utrecht, Utrecht UniversityMedical Image Analysis, Department of Biomedical Engineering, Eindhoven University of TechnologyDepartment of Medical Oncology, University Medical Center Utrecht, Utrecht UniversityDepartment of Radiotherapy, University Medical Center Utrecht, Utrecht UniversityDepartment of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht UniversityDepartment of Radiology, Mayo ClinicalDepartment of Data Science and Biostatistics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht UniversityUtrecht UniversityUtrecht UniversityDepartment of Medical Oncology, Zuyderland Medical CenterDepartment of Medical Oncology, Radboudumc, Radboud UniversityDepartment of Radiology, Isala ZwolleDepartment of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center AmsterdamIsala Oncology Center, Isala ZwolleDepartment of Medical Oncology, UMC Groningen, University of GroningenDepartment of Medical Oncology, Medisch Spectrum TwenteDepartment of Medical Oncology, Maxima Medical CenterDepartment of Internal Medicine, Amphia HospitalDepartment of Medical Oncology, Leiden University Medical Center, Leiden UniversityDepartment of Public Health, Healthcare Innovation and Evaluation and Medical Humanities, Julius Center Research Program Methodology, University Medical Center Utrecht, Utrecht UniversityDepartment of Pathology, University Medical Center Utrecht, Utrecht UniversityDepartment of Pathology, University Medical Center Utrecht, Utrecht UniversityDepartment of Radiology, University Medical Center Utrecht, Utrecht UniversityImage Sciences Institute, University Medical Center Utrecht, Utrecht UniversityDepartment of Medical Oncology, University Medical Center Utrecht, Utrecht UniversityMedical Image Analysis, Department of Biomedical Engineering, Eindhoven University of TechnologyAbstract Immune checkpoint inhibitor (ICI) treatment has proven successful for advanced melanoma, but is associated with potentially severe toxicity and high costs. Accurate biomarkers for response are lacking. The present work is the first to investigate the value of deep learning on CT imaging of metastatic lesions for predicting ICI treatment outcomes in advanced melanoma. Adult patients that were treated with ICI for advanced melanoma were retrospectively identified from ten participating centers. A deep learning model (DLM) was trained on volumes of lesions on baseline CT to predict clinical benefit. The DLM was compared to and combined with a model of known clinical predictors (presence of liver and brain metastasis, level of lactate dehydrogenase, performance status and number of affected organs). A total of 730 eligible patients with 2722 lesions were included. The DLM reached an area under the receiver operating characteristic (AUROC) of 0.607 [95%CI 0.565–0.648]. In comparison, a model of clinical predictors reached an AUROC of 0.635 [95%CI 0.59 –0.678]. The combination model reached an AUROC of 0.635 [95% CI 0.595–0.676]. Differences in AUROC were not statistically significant. The output of the DLM was significantly correlated with four of the five input variables of the clinical model. The DLM reached a statistically significant discriminative value, but was unable to improve over known clinical predictors. The present work shows that the assessment over known clinical predictors is an essential step for imaging-based prediction and brings important nuance to the almost exclusively positive findings in this field.https://doi.org/10.1038/s41598-024-81188-2
spellingShingle Laurens S. Ter Maat
Rob A. J. De Mooij
Isabella A. J. Van Duin
Joost J. C. Verhoeff
Sjoerd G. Elias
Tim Leiner
Wouter A. C. van Amsterdam
Max F. Troenokarso
Eran R. A. N. Arntz
Franchette W. P. J. Van den Berkmortel
Marye J. Boers-Sonderen
Martijn F. Boomsma
Fons J. M. Van den Eertwegh
Jan Willem de Groot
Geke A. P. Hospers
Djura Piersma
Art Vreugdenhil
Hans M. Westgeest
Ellen Kapiteijn
Ardine A. De Wit
Willeke A. M. Blokx
Paul J. Van Diest
Pim A. De Jong
Josien P. W. Pluim
Karijn P. M. Suijkerbuijk
Mitko Veta
Deep learning on CT scans to predict checkpoint inhibitor treatment outcomes in advanced melanoma
Scientific Reports
title Deep learning on CT scans to predict checkpoint inhibitor treatment outcomes in advanced melanoma
title_full Deep learning on CT scans to predict checkpoint inhibitor treatment outcomes in advanced melanoma
title_fullStr Deep learning on CT scans to predict checkpoint inhibitor treatment outcomes in advanced melanoma
title_full_unstemmed Deep learning on CT scans to predict checkpoint inhibitor treatment outcomes in advanced melanoma
title_short Deep learning on CT scans to predict checkpoint inhibitor treatment outcomes in advanced melanoma
title_sort deep learning on ct scans to predict checkpoint inhibitor treatment outcomes in advanced melanoma
url https://doi.org/10.1038/s41598-024-81188-2
work_keys_str_mv AT laurensstermaat deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT robajdemooij deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT isabellaajvanduin deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT joostjcverhoeff deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT sjoerdgelias deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT timleiner deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT wouteracvanamsterdam deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT maxftroenokarso deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT eranranarntz deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT franchettewpjvandenberkmortel deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT maryejboerssonderen deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT martijnfboomsma deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT fonsjmvandeneertwegh deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT janwillemdegroot deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT gekeaphospers deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT djurapiersma deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT artvreugdenhil deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT hansmwestgeest deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT ellenkapiteijn deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT ardineadewit deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT willekeamblokx deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT pauljvandiest deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT pimadejong deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT josienpwpluim deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT karijnpmsuijkerbuijk deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma
AT mitkoveta deeplearningonctscanstopredictcheckpointinhibitortreatmentoutcomesinadvancedmelanoma