Nuclear Magnetic Resonance (NMR)-Based Lipidomics Reveal the Association of Altered Red Blood Cell (RBC) Membrane Lipidome with the Presence and the Severity of Coronary Artery Stenosis

Coronary heart disease (CHD) is the leading cause of morbidity and mortality worldwide despite significant improvements in diagnostic modalities. Emerging evidence suggests that erythrocytes, or red blood cells (RBCs), are one of the most important contributors to the events implicated in atheroscle...

Full description

Saved in:
Bibliographic Details
Main Authors: Ioanna A. Kastani, Paraskevi K. Soltani, Giannis G. Baltogiannis, Georgios A. Christou, Eleni T. Bairaktari, Christina E. Kostara
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/30/1/36
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coronary heart disease (CHD) is the leading cause of morbidity and mortality worldwide despite significant improvements in diagnostic modalities. Emerging evidence suggests that erythrocytes, or red blood cells (RBCs), are one of the most important contributors to the events implicated in atherosclerosis, although the molecular mechanisms behind it are under investigation. We used NMR-based lipidomic technology to investigate the RBC lipidome in patients with CHD compared to those with normal coronary arteries (NCAs), all angiographically documented, and its correlation with coronary artery stenosis. Targeted and untargeted lipidomic analysis revealed that CHD patients presented significant lipid alterations in the RBC membrane, characterized by higher cholesterol, sphingolipids, saturated and monounsaturated fatty acids, lower phospholipids (glycerophospholipids and ether glycerolipids), and unsaturated and polyunsaturated fatty acids. These aberrations gradually distinguish the three subgroups of patients with mild, moderate, and severe coronary stenosis, potentially indicating their non-negligible involvement in the onset and progression of atherosclerosis. The comprehensive analysis of RBC-membrane-derived lipids with omics approaches could unravel specific lipid abnormalities taking place at the silent subclinical stage of atherosclerosis and could have the potential to identify patients with subtle, but still proatherogenic, abnormalities that may confer a higher risk for the development of CHD.
ISSN:1420-3049