Investigation of Transient Thermal Behavior in Thyristors Under Pulse Conditions
Under pulsed discharge conditions, high-power thyristors face challenges such as an excessively high current rise rate (di/dt) and the issue of triggering front expansion, which are difficult to accurately simulate. Traditional modeling approaches often neglect the non-uniform distribution and expan...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Micromachines |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-666X/16/3/291 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Under pulsed discharge conditions, high-power thyristors face challenges such as an excessively high current rise rate (di/dt) and the issue of triggering front expansion, which are difficult to accurately simulate. Traditional modeling approaches often neglect the non-uniform distribution and expansion process of the internal current within the silicon wafer. In this study, we address these limitations by incorporating these critical factors into our analysis. Using a two-dimensional device–circuit co-simulation approach, we investigate the current, temperature, and thermal power distribution within the thyristor during the turn-on process under pulsed discharge conditions. Based on the simulation results, we derive the velocity equation governing the transverse expansion of the thyristor current. Furthermore, we establish a three-dimensional finite element model of the thyristor and develop a generalized extended model for complex gate structures. These models enable us to obtain the transient temperature distribution during the thyristor turn-on process under pulsed conditions. Finally, we conduct cycle surge life tests on various types of thyristors, providing valuable insights for the selection and optimization of thyristors designed for pulsed applications. |
|---|---|
| ISSN: | 2072-666X |