Feature extraction algorithm based on quaternion common spatial pattern for banknote recognition
New feature extraction algorithm was proposed based on quaternion common spatial pattern in order to solve the lack of effective description of phase information in the banknote feature extraction and analysis. Firstly, the quaternion matrix was utilized to describe the phase information of the bank...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | zho |
Published: |
Editorial Department of Journal on Communications
2018-12-01
|
Series: | Tongxin xuebao |
Subjects: | |
Online Access: | http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2018285/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | New feature extraction algorithm was proposed based on quaternion common spatial pattern in order to solve the lack of effective description of phase information in the banknote feature extraction and analysis. Firstly, the quaternion matrix was utilized to describe the phase information of the banknote image, and made diagonalization of quaternion composite Hermitian matrix. Secondly, the sample vector was input to the composite quaternion filter. The extracted feature vector was obtained by using the variance of the real part and imaginary part. Finally, the neural network was applied as classifier and the reject class was introduced in the banknote recognition. The experimental results illustrate that the proposed algorithm obtains high recognition rate and meets the real-time requirement of the banknote recognition system. The proposed algorithm has already been applied in a resource-constrained embedded system at the same time. |
---|---|
ISSN: | 1000-436X |