Niemeier Lattices in the Free Fermionic Heterotic–String Formulation

The spinor–vector duality was discovered in free fermionic constructions of the heterotic string in four dimensions. It played a key role in the construction of heterotic–string models with an anomaly-free extra Z′ symmetry that may remain unbroken down to low energy scales. A generic signature of t...

Full description

Saved in:
Bibliographic Details
Main Authors: Panos Athanasopoulos, Alon E. Faraggi
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2017/3572469
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The spinor–vector duality was discovered in free fermionic constructions of the heterotic string in four dimensions. It played a key role in the construction of heterotic–string models with an anomaly-free extra Z′ symmetry that may remain unbroken down to low energy scales. A generic signature of the low scale string derived Z′ model is via diphoton excess that may be within reach of the LHC. A fascinating possibility is that the spinor–vector duality symmetry is rooted in the structure of the heterotic–string compactifications to two dimensions. The two-dimensional heterotic–string theories are in turn related to the so-called moonshine symmetries that underlie the two-dimensional compactifications. In this paper, we embark on exploration of this connection by the free fermionic formulation to classify the symmetries of the two-dimensional heterotic–string theories. We use two complementary approaches in our classification. The first utilises a construction which is akin to the one used in the spinor–vector duality. Underlying this method is the triality property of SO(8) representations. In the second approach, we use the free fermionic tools to classify the twenty-four-dimensional Niemeier lattices.
ISSN:1687-9120
1687-9139